J. Inst. Electrostat. Jpn. 論文

# CH<sub>4</sub>/CO<sub>2</sub>改質におけるPacked-bed DBDの放電特性

## 野崎 智洋\*,1,盛 遵荣\*

(2020年9月24日受付;2020年11月13日受理)

### Discharge Properties of Packed-bed DBD Reactor in CH<sub>4</sub>/CO<sub>2</sub> Reforming Tomohiro NOZAKI<sup>\*,1</sup> and Zunrong SHENG<sup>\*</sup>

(Received September 24, 2020; Accepted November 13, 2020)

The discharge properties of the packed-bed DBD (PB-DBD) reactor, which is designed for CH<sub>4</sub>/CO<sub>2</sub> reforming, was studied. The frequency (12 kHz, 100 kHz), catalyst temperature (400–700°C), Specific Energy Input (*SEI* = 1.37 and 2.0 eV/molecule), and Gaseous Hourly Space Velocity (*GHSV* = 5,144 and 10,289 h<sup>-1</sup>) were varied as principle parameters. Meantime, the discharge properties of PB-DBD are clarified in terms of discharge sustain voltage, charge transferred per cycle, discharge current, and reduced electric field. Moreover, the discharge properties of PB-DBD are compared with empty-DBD where no catalysts are loaded. Interestingly, packed material has no impact on the discharge behavior of PB-DBD due to the 14wt% metallic nanoparticles distributed uniformly over the Al<sub>2</sub>O<sub>3</sub> pellets. Moreover, there is no clear dependence of *SEI* and *GHSV* on discharge current was doubled, while the discharge sustain voltage was halved at fixed discharge power. Towards better insight into the discharge mechanism, electron collision frequency in the CH<sub>4</sub>/CO<sub>2</sub> mixture was analyzed by BOLSIG+ and correlated with macroscopic discharge behavior of PB-DBD at a different frequency.

#### 1. はじめに

近年,プラズマと触媒を組み合わせた反応場を利用して, アンモニア合成や二酸化炭素の資源化を行うプラズマ触 媒に関する研究が注目されている<sup>1,2)</sup>.我々は、誘電体バ リア放電に触媒を充填した Packed-Bed DBD (PB-DBD) を用いて、CH4/CO2改質に関する研究を行っている. DBD による反応促進効果を定量的に評価するためには、 CH4反応速度や活性化エネルギーなど速度論的な評価に加 え<sup>3)</sup>, DBD の放電特性を解析して触媒反応との因果関係を 明らかにしなければならない. PB-DBD の放電特性を調べ た先行研究では4%、触媒金属を担持していない誘電体を対 象にしているため、リサージュ図形から得られる放電維持 電圧などの諸量に関して、本稿で述べる測定結果と大きく 異なる点がある.本稿では、金属微粒子を担持した触媒充 填型 PB-DBD を対象に、印加電圧、電源周波数、触媒充填 層の温度, 比投入エネルギー, 空間速度を変化させ, リサ ージュ図形の解析から PB-DBD の放電特性を明らかにした.

**キーワード**:プラズマ触媒,CH4改質,誘電体バリア放 電,リサージュ図形

\* 東京工業大学工学院機械系

(〒152-8550 東京都目黒区大岡山 2-12-1-I6-24)

Tokyo Institute of Technology, Department of Mechanical Engineering, 2-12-1-I6-24 O-okayama, Meguro-ku, Tokyo 152-8550, Japan

nozaki.t.ab@m.titech.ac.jp

DOI: https://doi.org/10.34342/iesj.2021.45.1.2

#### 2. 実験装置および実験方法

実験装置の概略を図1に示す.内径20 mmの石英管 にLa (3wt%)-Ni (11wt%)/Al<sub>2</sub>O<sub>3</sub> (3×3×1 mm; Raschig Ring)触媒を充填した.触媒充填層は電気炉によって加 熱し、赤外線カメラで測定しながら所望の触媒温度に調 整した.リサージュ図形は接地電極に挿入したコンデン サーを使って測定した.ガス流量はプログラム式質量流 量計で制御しており、CH4流量を一定の周期でON-OFF することで改質反応と触媒再生を繰り返し行った.これ により、炭素が析出するCH4 リッチな条件 (CH4/CO<sub>2</sub>>1) でも安定に実験を行うことができる<sup>7)</sup>.

**PB-DBD**の形成には、周波数が異なる高電圧電源を用いた.図2(a),(b)に電圧電流波形を示す.12 kHzの高



図1 PB-DBD 反応器の概略図

Fig.1 Schematic diagram of PB-DBD reactor.



図 2 電圧 - 電流波形 (a) 12 kHz, (b) 100 kHz. 圧力 5 kPa; 触媒温度 600℃; CH4/CO2 = 1; 電力 85 W

Fig. 2 Voltage-Current waveforms: (a) 12 kHz and (b) 100 kHz: Pressure = 5 kPa; Catalyst temperature =  $600^{\circ}$ C; CH<sub>4</sub>/CO<sub>2</sub> = 1; Power = 85 W.

電圧は歪んだ正弦波であるが(Logy Electric: LHV-13AC),電圧の立下りでストリーマ由来の電流パルスが 形成される.印加電圧の立上りでも電流パルスは形成さ れるが,微細であるためややわかりにくい.リサージュ 図形から得られる放電維持電圧などの諸量は,印加電圧 波形に依存しないため<sup>8)</sup>,歪波形に対しても問題なくリサ ージュ解析を適用できる.同図(b)は100 kHzの正弦波高 電圧で,高周波発信機(ASTECH: LG-10S RF Generator) の出力をフェライトコア変圧器で昇圧した.12 kHz 電源と 比較して操作上の制約が多いため,電力は90 W 一定での み実験に供した.12 kHz の場合と同様,電流パルスは印 加電圧の立下りにおいて,より明確に観察されている.

#### 3. PB-DBDの放電特性

電力は比投入エネルギー (Specific Energy Input: *SEI*) を基準に設定した.

 $SEI(eV/molecule) \propto$  電力/総ガス流量 (1)

SEI は気体分子あたりに印加される放電エネルギーに相当 し, eV/molecule, J/Liter, kJ/mol などの単位で表す. SEI を用いれば、プラズマの種類、ガス組成、反応器形状、 触媒の種類などに関係なく、様々なプラズマ反応器のエ ネルギー効率やガス転換能などを直接比較できる. SEI が CH<sub>4</sub>/CO<sub>2</sub>改質に必要な反応吸熱量(CH<sub>4</sub> + CO<sub>2</sub> = 2CO + 2H<sub>2</sub>: ΔH = 247 kJ/mol = 2.56 eV/molecule)を上回る場合, 過剰に投入した電力は熱源と等価になる<sup>9</sup>. そのため, 本研究では *SEI* が反応吸熱量(2.56 eV/molecule)を超 えないように設定した.

空間速度(Gaseous Hourly Space Velocity: GHSV)は滞留時間の逆数に相当し、単位時間あたりに処理する総ガス量が反応器容積の何倍に相当するかを表す。一般に、GHSV = 1,000–10,000 h<sup>-1</sup>に設定される。GHSV が小さすぎる場合、反応時間が過剰に長いことを意味しており、エネルギー効率は必然的に低くなることに注意を要する。

異なる触媒の反応性を評価する場合,触媒重量あたり の空間速度(Weight Hourly Space Velocity: WHSV, cm<sup>3</sup>/h·g) を用いる.流量を重量基準(g/h)で表せば,WHSVと GHSV は同じ単位(h<sup>-1</sup>)で表されるが,絶対値を比較す ることに意味はない.SEI,GHSVともに,標準状態(101 kPa, 298 K)で算出する.SEIとGHSVの積は電力密度 に比例する.反応場のガス温度を見積もる場合,電力密 度を使うことがある<sup>10,11</sup>.

電力密度 
$$(W / cm^3) \propto SEI \times GHSV$$
 (3)

DBD で消費される電力は、リサージュ図形の面積から1周期あたりの放電エネルギー(J)を測定し、これに周波数をかけて算出する(図3,(4)式).

$$P_{\rm L}(W) = f \oint Q dU \tag{4}$$



- 図 3 12 kHz, 100 kHz PB-DBD に対するリサージュ図形. 圧力 5 kPa; 触媒温度 600℃; CH4/CO<sub>2</sub> = 0.8; 電力 90 W
- Fig. 3 Lissajous plot for 12 kHz and 100 kHz PB-DBD. Pressure = 5 kPa; Catalyst temperature = 600°C; CH<sub>4</sub>/CO<sub>2</sub> = 0.8; Power = 90 W.

Manley はリサージュ図形を軸対象の平行四辺形と仮定 し,電力を定式化した((5)式)<sup>12)</sup>.

$$P_{M}$$
 (W) = 4 $fU_{sus}$   $\frac{Q_{p\cdot p}}{2}$  = 4 $U_{sus}$   $\frac{I_{p\cdot p}}{2}$  (5)

(5)式より,電力は放電維持電圧(U<sub>sus</sub>),放電電流(I<sub>pp</sub>),
放電電荷量(Q<sub>pp</sub>),周波数(f)を主要パラメーターとして評価できることがわかる.

放電維持電圧は、気体の絶縁破壊電圧と練成している<sup>8</sup>. 100 kHz において放電維持電圧が低くなっているのは、 12 kHz より絶縁破壊電圧が低くなるためである.気体 の絶縁破壊特性を表すパッシェンの法則は、周波数の効 果を考慮して、pd 積と fd 積の関数として拡張できる<sup>13</sup>. 周波数が高くなるほど荷電粒子が放電空間に残留する確 率が高まり絶縁破壊電圧が低下する.PB-DBDの場合、 荷電粒子が触媒に帯電して残留効果が高まるため、12 kHz と 100 kHz で放電維持電圧に顕著な差が生じたと考 えられる.100 kHz では1周期あたりの放電時間が短いた め、リサージュ図形で示される放電電荷量は必然的に小 さくなる.さらに、放電維持電圧も低いため、1周期あた りの放電エネルギー(図3)は12 kHz と比較して極端に 小さい.しかし、周波数が約1桁高いため放電電流が大 きくなり、電力はいずれの周波数でも90 W である.

種々の条件でリサージュ図形を測定し、 $P_{\rm M} \ge P_{\rm L}$ を比較した結果を図4に示す.実験では、印加電圧と周波数を変化させ、さらに触媒の有無による違いも検討した. Manleyの式で求めた電力は((5)式)、図3の破線で示した平行四辺形の面積に相当する.実際のリサージュ図形は理想的な平行四辺形ではないため、図の比較から $P_{\rm L} < P_{\rm M}$ が成立する.触媒の有無に関係なく $P_{\rm M} \ge P_{\rm L}$ は1つの直線で表されており、触媒によって電力はほとんど



- 図 4 *P*<sup>M</sup> と *P*<sup>L</sup> の関係. □ 100 kHz Empty-DBD; 100 kHz PB-DBD; ○ 12 kHz Empty-DBD; ● 12 kHz PB-DBD. 圧力 5 kPa; 触媒温度 600℃; CH₄/CO<sub>2</sub> = 0.8; 電力 6–90 W
- Fig. 4  $P_{M}$  v.s.  $P_{L}$ :  $\Box$  100 kHz Empty-DBD;  $\Box$  100 kHz PB-DBD;  $\bigcirc$  12 kHz Empty-DBD;  $\spadesuit$  12 kHz PB-DBD. Pressure = 5 kPa; Catalyst temperature = 600°C; CH<sub>4</sub>/CO<sub>2</sub> = 0.8; Power = 6–90 W.

影響を受けないことがわかる.

図5は印加電圧を変化させた時の,見かけの静電容量, 放電維持電圧,放電電荷量,放電電流を示している.放 電電流以外は1つの曲線で表されており,1周期あたり の放電特性は,周波数および触媒の有無によって変化し ないことがわかる.一方,放電電流は周波数によって異 なる2つの曲線にわかれる(図5(d)).ただし,触媒の 有無によって放電電流は変化しておらず,図4に示した 結果を支持している.

図6に PB-DBD の模式図を示す。触媒は放電ギャップ にランダムに充填され、触媒あたりの静電容量 ( $C_{pi}$ ) とは別に、隣接する触媒の間にも浮遊容量 ( $C_{gi}$ )を形 成する.これを簡略化するために、触媒容量と浮遊容量



図 5 電力を決定する因子. □ 100 kHz Empty-DBD; ■ 100 kHz PB-DBD; ○ 12 kHz Empty-DBD; ● 12 kHz PB-DBD. 実験条件は図 4 のキャプション参照



が直列接続した等価回路を考えると,合成静電容量は(6) 式で近似できる.ここで, $C_{pi} >> C_{gi}$ , $C_{pi} = -定$ , $C_{gi} = -$ 定と仮定した.

$$C_{comb} = \left(\sum_{i=1}^{n} \frac{1}{C_{pi}} + \sum_{j=1}^{n+1} \frac{1}{C_{gj}}\right)^{-1} = \frac{C_{pi}C_{gj}}{(n+1) C_{pi} + nC_{gj}} \approx \frac{C_{gj}}{n+1} \approx C_{g}$$
(6)

 $C_{si}$ は放電ギャップを (n+1)等分した空隙の静電容量と 等価であるため $C_{si}/(n$ +1)  $\approx C_s$ となり,放電開始前の合成 静電容量 $C_{comb}$ は,触媒なしの放電ギャップの静電容量  $C_s$ と概ね等しくなる.放電が開始した後は,複数のス トリーマが触媒表面を覆うように形成される.この時, 同図(c)に示すようにストリーマが電極間を短絡するよ うに形成されれば,これを電気抵抗で表すことができる. 図 6(c)に示した等価回路は触媒がない DBD と同じであ り,触媒の静電容量はリサージュ図形に反映されない. 換言すれば,放電期間における PB-DBD 反応器の静電 容量は,触媒と無関係にガラス管の静電容量 ( $C_d$ )で 決定されることを示唆している.

Ref. 4-6 は、PB-DBD のリサージュ解析を行い、放電 開始電圧などの諸量が、充填物の比誘電率や大きさによ って変化することを報告している.しかし、充填物とし て ALO<sub>3</sub> や SiO<sub>2</sub> ビーズを用いており、触媒のように金属 微粒子を担持していない.金属触媒によって表面電気抵 抗が低くなると、ストリーマはより遠方まで進展し、触 媒表面の広い範囲を電離する<sup>14)</sup>.ストリーマが複数の触 媒を橋渡しして進展する様子も観察されており、図 6(c) を仮定する根拠となっている.さらに、Ref. 4-6 で対象 としている PB-DBD は常温・大気圧で形成されるが、我々 が対象とする PB-DBD は 400-700℃、5 kPa で形成される. 例えば、電気伝導性を有する固体炭素が多量に析出すると、 DBD は形成されなくなる.しかし、微減圧することで炭 素が析出しても安定にストリーマを形成し、電極間の広い 範囲を電離できる.微減圧によってストリーマが空隙に広 がりやすくなり, 触媒の表面電気伝導性や比誘電率の影響 を受けにくくなることが一因と考えられる.

#### 4. 換算電界強度と放電特性

DBD により誘起される化学反応は、ストリーマで生 成される活性種に起因しており、個々のストリーマに対 して電子エネルギーおよび電子密度を制御することが本 質的に重要である.電力を増やせば CH4 や CO2 の転換 率が増加するため、一見プラズマによるシナジーが強く 発現しているように見受けられる.しかし、電力あたり の反応量で比較すると、必ずしも反応促進効果は高まっ ていないことが多い、すなわち、電力を増大させても、 単位時間あたりに発生するストリーマの本数を変えてい るだけであれば<sup>15)</sup>,反応器を複数並列運転していること と等価であり、プラズマを制御したことにはならない. このことを確かめるために、CH4/CO2改質に対してアレ ニウスプロットを作成し、総括反応速度に対する活性化 エネルギーを求めると, SEI および GHSV に対して活性 化エネルギーはほとんど変化しないことが明らかになっ た<sup>3)</sup>. CH<sub>4</sub>/H<sub>2</sub>O 改質の場合でも同様の結果が得られてい る<sup>16)</sup>. すなわち, SEI や GHSV を変化させても, 平均値 で見たストリーマの物性(電子密度,電子温度)は変化 してない可能性を示唆している.

**PB-DBD**の巨視的な放電特性(リサージュ図形の解析) に加え、ミクロな視点で反応機構を理解するために、換 算電界強度と衝突周波数をリンクさせて考察した。

$$\frac{E}{N}(Td) = \frac{U_{sus}}{R \times N} \tag{7}$$

Usue は放電維持電圧, Rは反応器半径, Nはガス分子数 密度である.(7)式で求めた換算電界強度は, ストリー マ先端部の局所電界強度を表していない.しかし, 実験 で測定可能な諸量から換算電界強度を推定するために (7)式は多用される<sup>3,8,11)</sup>.触媒接点で電界が集中すると (7)式で推定される値よりも高い電界が形成される可能



図 6 PB-DBD の等価回路. (a) 触媒充填層の静電容量分布を表した模式図; (b) 単純化した静電容量モデル(絶縁破壊前); (c) 放電開始後の等価回路

Fig. 6 Equivalent circuit of PB-DBD. (a) Packed-bed configuration creating a complex network of capacitance; (b) A unit capacitance system before gas breakdown; (c) After gas breakdown.

性がある.しかし,図4-6で示したように,PB-DBDの 放電特性は触媒の影響を受けにくいため,本稿では(7) 式によって換算電界強度を求めた.実験条件は表1に示 すとおりである.電力は(4)式から求めた.

表1より, 12-15 kHz では放電維持電圧はほぼ一定であ る. そのため, 温度が高くなるほど気体密度が低下し換 算電界強度は単調に増加する(図7). 周波数が変化しな ければ, 換算電界強度は SEI, GHSV によってほとんど変 化せず, 1つの曲線群で表される. 逆に, SEI, GHSV が 一定でも, 100 kHz の結果は異なる曲線で表される.

ボルツマン方程式ソルバーBOLSIG+を用いて,電子 衝突周波数を推定した.CH4とCO2の衝突断面積は文献 から参照した<sup>17,18)</sup>.計算結果をCH4についてのみ図8に 示す.電離周波数は換算電界強度とともに顕著に大きく なっている.すなわち温度が上昇すると電離が活発にな り,より大きな放電電流が得られるはずである.しかし,





see Table 1.

表1に示した測定結果からそのような特性は確認されな い.例えば、第1行目に示した実験では、電力90W一 定のもと、温度変化による放電維持電圧の変動(3.03<sup>+%29</sup>) および放電電流の変動(9.18<sup>+%39</sup>)はごく僅かである.温 度が変化すれば CH4 と CO2 の反応量も大きく変化する が<sup>30</sup>、ガス組成の変化に対する放電特性の変化もほとん どない.(7)式で見積もった換算電界強度は、半定量的 には放電特性を反映しているが、ストリーマ先端部の電 界強度、あるいは触媒接点における電界集中などの効果 は十分に評価できていない可能性がある.一方、放電電 流は電力の増減に対応するように変化している.周波数 および温度が一定なら換算電界強度も一定とみなせるた め、電力の増大による反応量の増加は、ストリーマ発生 頻度に比例した結果であり、シナジー効果の増強でない と考えられる.

100 kHz では放電維持電圧が大きく低下するため、振



図 8 BOLSIG+で求めた電子—メタン衝突周波数. CH<sub>4</sub>/CO<sub>2</sub> = 1 and 873 K

Fig. 8 Electron-CH<sub>4</sub> collision frequency calculated by BOLSIG+ at  $CH_4/CO_2 = 1$  and 873 K.

| 表1    | 実験条件:圧力 5 kPa; 触媒温度 440-735℃; CH₄/CO₂ = 0.8                                                                               |
|-------|---------------------------------------------------------------------------------------------------------------------------|
| Table | 1 Experimental conditions: Catalyst temperature = $440-735$ °C; CH <sub>4</sub> /CO <sub>2</sub> = 0.8; Pressure = 5 kPa. |

| Run | Frequency (kHz) | Usus<br>( kV )         | <i>I<sub>p-p</sub>/</i> 2<br>( mA ) | Power<br>(W) | Total flow<br>( cm <sup>3</sup> /min ) | SEI<br>( eV/molecule ) | <i>GHSV</i><br>(h <sup>-1</sup> ) |
|-----|-----------------|------------------------|-------------------------------------|--------------|----------------------------------------|------------------------|-----------------------------------|
|     | 12              | $3.03^{+0.16}_{-0.21}$ | $9.18 \substack{+0.61 \\ -0.47}$    | 90           | 1,000                                  | 1.37                   | 5,144                             |
|     | 15              | $3.37^{+0.23}_{-0.27}$ | $14.1 \substack{+0.75 \\ -0.74}$    | 180          | 2,000                                  | 1.37                   | 10,289                            |
| •   | 15              | $3.15_{-0.15}^{+0.25}$ | 12.5 +1.27                          | 130          | 1,000                                  | 2.0                    | 5,144                             |
| ٠   | 12              | $3.05^{+0.23}_{-0.35}$ | $9.19 \substack{+0.67 \\ -0.94}$    | 90           | 700                                    | 2.0                    | 3,600                             |
|     | 100             | $1.28^{+0.07}_{-0.13}$ | $21.5_{-0.81}^{+0.84}$              | 90           | 1,000                                  | 1.37                   | 5,144                             |

動励起分子の生成に適した低電界領域でストリーマが形成される<sup>3,19</sup>. さらに, 12 kHz と比べて電流が 2倍に増えるため,振動励起分子の生成量を大きく増加できる. このことに起因して,100 kHz における CH<sub>4</sub>/CO<sub>2</sub> 改質反応の活性化エネルギーは熱反応と比較して約半減する<sup>3)</sup>. 一方,12-15 kHz の場合は,*SEI や GHSV* を変化させても活性化エネルギーはほとんど変化しないことを確認している. この点に関して,図7,8 に示された巨視的な放電特性は,プラズマ触媒反応機構と良い相関が取れている.

#### 5. おわりに

CH4/CO2 改質を目的とした PB-DBD を対象に, ガス組 成, 周波数, 印加電圧, ガス流量, 電力に対して放電特 性を明らかにした. 放電特性は周波数によって顕著に変 化し, 100 kHz では 12 kHz と比較して, 電力は一定でも 放電電流を約2倍高めることができる。 周波数を 12-15 kHz で固定すると, SEI, GHSV を変化させても放電特性 は本質的に変化しない. すなわち, 電力の増加によって CH4やCO2の転換率が増大しても、電力あたりの反応量 は変化していない可能性がある、このことは、反応器を 複数並列運転することと等価であり、反応器のスケール アップには有益な知見を与えるが、プラズマ触媒反応そ のものを能動的に制御していない可能性がある.温度変 化に対する放電特性については、リサージュ図形から得 られた放電特性と BOLSIG+ から推定される衝突周波数 の間に明確な相関は確認できなかった. ストリーマ先端 部の局所電界強度、および触媒接点の電界集中などを考 慮した放電モデルが必要である.もっと重要なことは、 1つのストリーマを対象にした精緻なモデルと、リサー ジュから得られる巨視的な放電特性を結びつけることを 可能とする、学理に基づいた知見の獲得である.

#### 謝辞

本研究は CREST (JPMJCR19R3) の助成を受けて行わ れた. Zunrong Sheng は China Scholarships Council (20170 7040056) の支援を受けている.

#### 参考文献

- A. Bogaerts et al: The 2020 plasma catalysis roadmap. J. Phys. D: Appl. Phys., 53 (2020) 443001
- 2) X. Tu, J.C. Whitehead and T. Nozaki: Plasma Catalysis: Fundamentals and Applications, Springer Nature (2019)
- Z. Sheng, Y. Watanabe, H.-H. Kim, S. Yao and T. Nozaki: Plasma-enabled mode-selective activation of CH<sub>4</sub> for dry reforming: First touch on the kinetic analysis. Chem. Eng. J.,

399 (2020) 125751

- F.J.J. Peeters and M.C.M. van de Sanden: The influence of partial surface discharging on the electrical characterization of DBDs. Plasma Sources Sci. Technol., 24 (2014) 015016
- T. Butterworth, R. Elder and R. Allen: Effects of particle size on CO<sub>2</sub> reduction and discharge characteristics in a packed bed plasma reactor. Chem. Eng. J., 293 (2016) 55
- T. Butterworth and R.W.K. Allen: Plasma-catalyst interaction studied in a single pellet DBD reactor: dielectric constant effect on plasma dynamics. Plasma Sources Sci. Technol., 26 (2017) 065008
- S. Kameshima, K. Tamura, Y. Ishibashi and T. Nozaki: Pulsed dry methane reforming in plasma-enhanced catalytic reaction. Catal. Today, 256 (2015) 67
- 8) 八木重典:バリア放電, 朝倉書店 (2012)
- T. Nozaki and K. Okazaki: Non-thermal plasma catalysis of methane: principles, energy efficiency, and applications. Catal. Today, 211 (2013) 29
- T. Nozaki, Y. Miyazaki, Y. Unno and K. Okazaki: Energy Distribution and Heat Transfer Mechanisms in Atmospheric Pressure Non-equilibrium Plasmas. J. Phys. D: Appl. Phys., 34 (2001) 3383
- 11) J. Kitayama and M. Kuzumoto: Analysis of ozone generation from air in silent discharge. J Phys. D: Appl. Phys., 32 (1999) 3032
- T.C. Manley: The electric characteristics of the ozonator discharge. Trans. Electrochem. Soc., 84 (1943) 93
- 13) 電気学会編: 放電ハンドブック, オーム社 (1991)
- 14) H.-H. Kim, Y. Teramoto and A. Ogata: Time-resolved imaging of positive pulsed corona-induced surface streamers on TiO<sub>2</sub> and γ-Al<sub>2</sub>O<sub>3</sub>-supported Ag catalysts. J. Phys. D: Appl. Phys., 49 (2016) 415204
- U. Kogelschatz: Dielectric-barrier Discharges: Their History, Discharge Physics, and Industrial Applications. Plasma Chem. Plasma Proc., 23 (2003) 1
- 16) T. Nozaki, W. Fukui and K. Okazaki: Reaction enhancement mechanism of non-thermal discharge and catalyst hybrid reaction for CH<sub>4</sub> reforming. Energy & Fuels, **22** (2008) 3600
- W.L. Morgan: A critical evaluation of low-energy electron impact cross sections for plasma modeling II: Cl<sub>4</sub>, SiH<sub>4</sub>, and CH<sub>4</sub>. Plasma Chem. Plasma Proc., **12** (1992) 477
- MORGAN database, http://www.lxcat.laplace.univ-tlse.fr, (2020-11-1)
- 19) Z. Sheng, H.-H. Kim, S. Yao and T. Nozaki: Plasma-chemical promotion of catalysis for CH<sub>4</sub> dry reforming: unveiling plasma-enabled reaction mechanisms. Phys. Chem. Chem. Phys., 22 (2020) 19349