J. Inst. Electrostat. Jpn.



# 低線量放射線照射ポリエチレンの空間電荷特性 光本 真一\*.1, 福間 眞澄\*\*, 藤井 雅之\*\*\*, 芳原 新也\*\*\*\*, 栗本 宗明\*\*\*\*\* (2018年7月12日受付: 2018年9月10日受理)

Space Charge Profile in Polyethylene with Irradiation of Low-dose Radioactive Ray under DC Voltage Application Shinichi MITSUMOTO<sup>\*,1</sup>, Masumi FUKUMA<sup>\*\*</sup>, Masayuki FUJII<sup>\*\*\*</sup>, Sin-ya HOHARA<sup>\*\*\*\*</sup> and Muneaki KURIMOTO<sup>\*\*\*\*\*</sup>

(Received July 12, 2018; Accepted September 10, 2018)

This paper describes space charge formation in low-dose radioactive-ray irradiated polyethylene (PE) film with thickness of 0.1 mm. Accumulated charge Q was measured by current integration meter using a capacitor of 10  $\mu$ F. It was found that Q of the radioactive-ray irradiated PE was higher than that of non-irradiated one after the voltage application of 15kV. These results indicate that low-dose radioactive-ray irradiation to PE enhances both conduction current and space charge accumulation in PE bulk under the voltage application of 15 kV.

## 1. はじめに

現在,電力ケーブルの電気絶縁材料としてポリエチレン が広く用いられている.送電時におけるエネルギー損失を 減らすための方法として,直流送電が検討されている.し かしながら,直流電界下ではポリエチレン中に蓄積する空 間電荷が局部電界を強調する事によって,ポリエチレンの 本質的な絶縁破壊の強さよりも低い値で絶縁破壊が発生 する可能性がある.一方,原子力発電所や宇宙環境にお いて使用される制御系電気ケーブルに,ポリエチレン材料 が使用される場合,放射線がポリエチレンに絶えず照射さ

```
キーワード:空間電荷,電気伝導,ポリエチレン,放射線
   * 豊田工業高等専門学校
    (〒471-8525 豊田市栄生町 2-1)
   National Institute of Technology, Toyota College, 2-1,
   Eisei-cho, Toyota-shi, Aichi 471-8525, Japan
 ** 松江工業高等専門学校
    (〒690-8518 松江市西生馬町 14-4)
   National Institute of Technology, Matsue College, 2-1,
   Nishiikuma-cho, Matsue-shi, Shimane 690-8518, Japan
*** 大島商船高等専門学校
    (〒742-2193 山口県大島郡周防大島町大字小松
    1091番地1)
   National Institute of Technology, Oshima College, 1091-
    1, Komatsu, Oshima-gun, Yamaguchi 742-2193, Japan
   近畿大学
    (〒577-8502 東大阪市小若江 3-4-1)
   Kindai University, 3-4-1, Kowakae, Higashiosaka-shi,
   Osaka 577-8502, Japan
**** 名古屋大学
    (〒464-8601 名古屋市千種区不老町)
   Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi,
   Aichi 464-8601, Japan
   mitumoto@toyota-ct.ac.jp
```

れる. ポリエチレンの電気特性に及ぼすガンマ線やX線 照射の影響に関する研究は多く存在するが,それらの多く は比較的大きな照射線量 (1.2 kGy 程度以上)の研究" であり,低線量照射時におけるポリエチレンの電気特性, 特に空間電荷について調べた報告例は,ほとんど見当たら ない.そのため本研究では,1 Gy 程度のX線または10<sup>6</sup> Gy 程度のガンマ線および中性子線が照射されたポリエチ レンの空間電荷特性を調べたので報告する.

### 2. 試料および放射線照射方法

試料としては、公称厚さ 0.1 mm の低密度ポリエチレン(LDPE)を用いた.この試料に Pu-Be を用いて中性 子線およびガンマ線を照射した(この場合の中性子線フ ルエンスは 7.3×10<sup>7</sup> n/cm<sup>2</sup> でありガンマ線照射線量は 1.6 ×10<sup>6</sup> Gy である(以降 Condition A と呼ぶ)).また X 線 照射装置を用いて,試料に 1.2 Gy の X 線照射を行った(以 降 Condition B と呼ぶ).

### 3. 空間電荷測定方法

照射6日後の試料に5,10,15 kVの電圧を照射面が正 電極となるように、5分間印加した.このときパルス静 電応力(PEA)法<sup>2</sup>により発生された空間電荷信号を、 ディジタルオシロスコープによって観測した.空間電荷 分布測定に用いたパルス電圧は250 V,平均化回数は 200回である.さらに電流積分電荷法<sup>3)</sup>を用いてポリエ チレン試料に直列接続された10 μFのコンデンサの電圧 Vの測定を行い、蓄積電荷量Qを評価した.電流積分 電荷法による電荷測定において電圧除去後に過渡的減衰 を経て安定に残留する電荷量は、電極からの注入電荷量 に関係していると考えられることから,電圧除去 60秒 後にコンデンサに蓄積された電荷量 Q を算出した.な お Q の算出は,10 μF のコンデンサ電圧 V とコンデンサ 容量の積によって求めた.すべての実験は室温で行った.

#### 4. 実験結果および考察

図1および図2に, 未照射 LDPE 試料および Condition A で照射した LDPE 試料の空間電荷分布の測定結果をそれぞ れ示す.表示したグラフの電圧印加条件は,15kV印加5 分後および電圧除去直後である. 電圧印加中の Condition A 試料において、未照射試料と比べて正極性の空間電荷が 分布していることがわかる. この正極性の空間電荷の最大 値は、30.9 C/m<sup>3</sup>であった. さらに電圧除去直後には、 Condition A 試料において最大値は 28.1 C/m<sup>3</sup>の正極性空間 電荷が分布していた. Condition B 試料でも正極性電荷が 確認された.これら正極性電荷は、電圧除去60秒後には ほとんど見られなくなった.図3は、電圧印加5分時の空 間電荷分布から算出した蓄積電荷密度の印加電圧依存性を 示す. 蓄積電荷密度の算出範囲は、Position 0 mm から 0.1 mmにおいて陰極電荷と陽極電荷が0C/m<sup>3</sup>となる範囲とし た. 未照射試料では、10 kV から 15 kV へ電圧を上昇させ ても蓄積電荷密度は大きくならなかったが、10 kV の各照 射試料の値と比べて, Condition A では 1.23 倍, Condition B では1.14倍と同程度の割合で蓄積電荷密度が大きくなった. 各試料において5kVから15kVにおける蓄積電荷密度増 加割合は, 未照射試料で約 2.6倍, Condition A では約 21倍, Condition B では約11倍であった。図3に見られる照射試 料の正極性空間電荷密度の増大は、放射線照射による電離 電荷が高電界下で変位したことにより発生した可能性が推 察される. また, Condition A と Condition B の照射線量(Gv) の違いを考慮すると、10, 15 kV 印加時における Condition Aの正極性電荷の形成に中性子照射が影響している可能 性も考えられる. Qの印加電圧依存性を図4に示す. 10 kV 印加までは、未照射、照射試料における Q に大きな違 いは認められなかった. しかし 15 kV 印加後では照射試 料のQが15kVの未照射試料の値と比べて, Condition A では 1.67 倍, Condition B では 1.98 倍の割合で大きくなっ た. Condition A と Condition B の比較について今後検討す る余地はあるが、15 kV 印加時には未照射試料に比べて照 射試料により多くの電荷注入による電流が流れていたこと が示唆される. これらの結果より, Condition A と Condition Bの低線量照射により、15 kV印加時に大きな電流が流れ、 試料内に蓄積される正極性の空間電荷密度が 10 kV 印加 時よりも増加した可能性があると考えられる.本研究の一 部は科学研究費(18K04120)の援助を受けて行われた.









図2 照射試料 (ConditionA) の空間電荷分布 Fig.2 Space charge profile in irradiated LDPE.



図3 空間電荷密度の印加電圧依存性

Fig.3 Applied voltage dependence of charge density.



図 4 コンデンサ蓄積電荷量 Q の印加電圧依存性 Fig.4 Applied voltage dependence of Q.

#### 参考文献

- 小嶋 雅之,田中 康寛,高田 達雄,大木 義路:直流 電圧印加によりγ線照射低密度ポリエチレン中に形成さ れる空間電荷分布.電気学会論文誌 A, 115-A (1995) 93
- T. Maeno, H. Kusibe, T. Takada and E. Cooke: Measurement of Spatial Charge Distribution in Thick Dielectrics Using the Pulsed Electroacoustic Method. IEEE trans. Electr. Insul., 23 (1988) 433
- 3)藤富 寿之,森 琢磨,岩田 知之,小野 泰貴,三宅 弘晃,田中 康寛,高田 達雄:ガンマ線照射電線ケー ブルの絶縁劣化特性の高電圧側・電流積分電荷量による 評価.電気学会全国大会,2-57 (2016) 69