J. Inst. Electrostat. Jpn.

<u>論 文</u>

処理範囲向上を目指した水平電極式動電法 (FEM-EK法)による汚染土壌の修復

澤 真也*, カビール ムハムドゥル*.1, 中島 春介**, 佐藤 友祐**, 森 茂久** (2017年9月11日受付: 2017年12月6日受理)

> Electrokinetic Remediation of Contaminated Soil by Using FEM-EK Process for the Enlargement of Treatment Range Shinya SAWA^{*}, Mahmudul KABIR^{*,1},

Shunsuke NAKAJIMA**, Yusuke SATO** and Shigehisa MORI **

(Received September 11, 2017; Accepted December 6, 2017)

Soil was polluted over a vast area of Japan due to the Fukushima Atomic Power Plant accident after the earthquake in 2011. Among the radioactive materials, Cesium (Cs) was scattered on the vast area near Fukushima, Japan. The removal of radioactive materials from the soil is highly needed although the remediation process is not easy. Electrokinetic method is one of the best methods as introduced by many researchers in order to purify the contaminated soil. We used a new method called FEM-EK (Flat Electrode Method- Electrokinetic) process where we proposed a flat electrode as a cathode which was set up on the surface of the contaminated soil. In this study, two experimental vessels of different sizes were prepared and EK treatments were conducted for larger treatment range comparing to previous reports. From our experiment results, more Cs was found in the upper layer of soil in large containers. The experimental results showed good potential of FEM-EK process in vast polluted area to purify contaminated soil.

1. はじめに

2011年3月11日に発生した東北地方太平洋沖地震と 津波の後,福島第一原子力発電所において大量の放射性 物質の放出事故が発生した.大漏出した主な放射能は ¹³¹I,¹³²I,¹³³I,^{129m}I,¹³²Te,¹³⁴Cs,¹³⁷Csに由来するもので あったが,半減期の短い放射性同位体は消滅し,現在の 汚染放射能はほぼ¹³⁴Csと¹³⁷Csによるものとなっている¹¹.

大気中に放出された放射性 Cs は、大気粒子状物質や 雨などを媒体として地表に沈着する.地表が裸地の状態 にある場合,放射性 Cs は表層土壌に沈着し、土壌中の 有機または無機粒子の負電荷に1価の陽イオン(Cs⁺) として吸着する.地表が植生でおおわれている場合,放 射性 Cs は一旦植物体表面に沈着するが、その後の降雨 や落葉および落枝などの物質循環の過程で表層土壌に集

キーワード:水平電極式動電法(FEM-EK法),セシウム, 動電処理,汚染土壌,除染

- * 秋田大学大学院理工学研究科
- (〒010-8502 秋田県秋田市手形学園町 1-1)

Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita City, Akita 010-8502, Japan ** 三和テッキ株式会社

(〒140-8669 東京都品川区南品川 6-4-6)

Sanwa Tekki Corporation, 6-4-6 Minami-Shinagawa, Shinagawa-Ku Tokyo 140-8669, Japan

¹ kabir@gipc.akita-u.ac.jp

まり, 土壌に吸着する. 一旦土壌に吸着した放射性 Cs の大部分は, 外部からの作用によって土壌から脱着され ない状態, すなわち固定された状態になる²⁾.

現在,放射性物質によって汚染された土壌の除染には, 表面土壌の削土が主に行われている.表面土壌の削土は 物理的な除染であるため,技術的に容易であり,緊急に 人の被ばく量を低下させる方法としては適切である.し かし,削土や土壌の運搬・保管などの管理における作業 員の安全や周辺環境への配慮,大量の汚染廃土の仮置き 場や中間処理場の設置などの課題も多い.こうした現状 の中で,原位置で除染を行う原位置処理技術の研究が行 われてきた.その中でも,界面動電現象を利用した動電 学的手法による処理法が,低透水性の土壌にも適用可能, 現場従事者への危険性が少ない,などの利点があること から注目されている³⁾.

動電学的手法による土壤浄化法は,動電処理とも呼ば れ,汚染土壌に電極を設置し,直流電圧を印加すること によって電気泳動と電気浸透を発生させて汚染物質を除 去する方法である⁴⁾.まず,直流電圧の印加によって両 極で水の電気分解反応が起こり,陽極付近で水素イオン, 陰極付近で水酸化物イオンが生成される.陽極付近で生 成される水素イオンにより,土粒子表面の陽イオンが脱 着され易くなる.水の電気分解と同時に,間隙水に溶存 した陽イオンと,拡散層中の陽イオンの一部は陰極方向 ヘ,溶存陰イオンは陽極方向へ移動する.この現象が電気泳動である.電位をので表すと、土中のイオンの移動速度vは1次元の場合、

$$v_{\rm em} = \frac{\mu_{em} \, d\Phi}{\tau^2 \, dx} \tag{1}$$

で表される⁴⁾. x 軸は陽極から陰極へ向かう方向に取っ ている.ここで,μem は水中におけるイオンの移動度,τ は屈曲度とよばれる無次元のパラメータである.大部分 の土において,土粒子表面は負に帯電しているため,間 隙中で電気泳動しうるイオンの中では陽イオンの量が多 くなる.イオンは電気泳動するとき,水分子と衝突しな がら移動するため,陰極へ向かう陽イオンの量が陰極へ 向かう陰イオンの量よりも大きいときには,陽極から陰 極へ向かう正味の水の流れが生ずる.この現象が電気浸 透である.電気浸透流の速度 v は次式で表される⁴⁾.

$$v_{\rm eo} = \mu_{\rm eo} \, \frac{d\Phi}{dx} \tag{2}$$

ここでµ_{eo} は電気浸透係数とよばれる量である. 電気浸 透係数は土粒子表面の負電荷の量や吸着イオンの状態に よって変化する.(1),(2)式から明らかなように電界が 大きいほど電気泳動速度,電気浸透流速は大きくなる. 本手法は,原位置での処理が可能なこと,また,汚染物 質の移動を電界によって制御するため,汚染物質の拡散 が生じにくい,他の浄化修復技術との組み合わせが容易 といった利点がある.

土壌中の放射性物質の鉛直分布については、チェルノ ブイリでの事例を参考にする。1986年に起こった原子 力発電所の事故では、¹³⁷Cs と⁹⁰Sr による土壌汚染が問題 となった。土壌表面からの Cs の地下への移動性を調べ た実測結果では、約 20年経過した状況で全体量の 90% 程度の Cs が地表から 5 cm 以内に留まり、地中への移行 は約 20-30 cm の深さまでであることが分かっている⁵⁾. また、福島第一原発から 80 km 圏内を中心に放射性 Cs の土壌深度分布調査をした結果、地表面土壌では、概ね 表層 5 cm 以内に全体量の 95%以上、表層 10 cm 以内に 99%以上が存在することが確認されている[®]. 土壌中の 放射性物質の鉛直分布を考慮すると,原位置処理の際, 放射性 Cs を土壌中から土壌表面に集中させて処理をす る方法が効率的であると思われる.

図1は日本原子力機構により報告されている,福島県 内で採取した放射性 Cs が吸着した土壌のそれぞれの粒 度分に含まれる放射性 Cs の割合である⁷⁰.同図より, 放射性 Cs は粘土部分以上 300 µm 以下の粒径において 多く吸着していることが分かる.

これまで秋田大学理工学研究科数理・電気電子情報学 専攻基礎電気研究室では、動電学的手法による傾斜面の 土壌に対する土壌浄化の研究が行われており、研究室レ ベルでその効果が確認されている^{8,9)}.しかし、この手 法では、陰極槽において Cs による二次被害の恐れがあ ることや,広範囲で処理をする際、高い電圧が必要であ ることや多くの電極が必要となることといった問題があ った.また、前述のように放射性 Cs の多くは土壌表層 5 cm に存在していることを考えると、陽極を土壌内部、 陰極を土壌表面に設置することで効率的に Cs を土壌表 面に移動させて回収することができると考えられる.

当該研究グループでは、これらの要素を検討し、陽極を 土壌内部、陰極を土壌表面に設置して直流電圧を印加す る水平電極式動電法(<u>Flat Electrode Method Electrokinetic</u> FEM-EK法)が考案され、非放射性セシウムの回収に成 功している^{10.11}. 図2にFEM-EK法の概略図を示す.

FEM-EK 法を用いて原位置処理をする場合,広大な面 積を一度に処理することが可能になる.そこで,本研究 では FEM-EK 法による実用化を目指し,汚染土壌浄化 の処理範囲を変更した場合を想定し,大きさの違う2つ の実験容器を用意して実験を行った.容器の大きさの違 いによって電気パラメータや Cs 除去量にどのような違 いが現れるかを明らかにし,装置の大型化が可能かどう かを検討した.その結果,処理範囲を大きくすることで さらに効率を上げることができることを確認した.

図1 福島県内の汚染土壌に含まれる放射性 Cs

Fig.1 Radioactive Cesium found in the soil of Fukushima prefecture, Japan⁷⁷.

図2 FEM-EK 法の概略図

Fig.2 Schematic diagram of FEM-EK process.

2. 実験方法

2.1 実験装置

大きさが異なる2つの容器(実験容器1,実験容器2) を用意して動電学的な実験を行う.実験容器1は121× 121×90mm, 実験容器2は232×167×90mmの寸法 である.図3に動電処理実験装置の概略図を示す.容器 下層には未汚染土壌に含水比 60%となるように水道水を 混合したものを深さ2 cm に敷く. その上に陽極を敷き, さらにその上に水道水を混合し含水比 60%とした濃度 50 ppmのCs汚染土壌を深さ5cmとなるように盛る.含水 比の大きさは電圧を印可した際の電極間の電流の大きさ. 電気浸透に影響を与える.含水比を大きくすることで間 隙水中のイオンの移動, 電気浸透による間隙水の移動も 多くなり、動電処理による効果が大きくなると考えられ る.本実験で使用した土壌は後述のように粒径が40-212 µmであり、含水比が60%を超えると水が飽和してしま った. そのため,含水比を 60%とし実験を行った. また, 土壌の乾燥を防ぐために実験容器には蓋をする. 蓋には 導線を通すために2つの小さい穴を開けてある.

実験容器 1 では未汚染土壌 150 g に水道水 90 g, Cs 汚 染土壌 350 g に水道水 210 g を混合する. 陽極には耐酸 性に優れているチタンメッシュ, 陰極には耐塩基性に優 れているステンレスメッシュを使用する.

実験容器 2 では未汚染土壌 400 g に水道水 240 g, Cs 汚 染土壌 1000 g に水道水 600 g を混合する. チタンは高価 であるため,実験容器 2 では陽極に価格の安い材料であ るステンレスメッシュ, 陰極にはステンレス板を使用する. また,電極間に流れる電流の経時変化を,電流検出用に 直列に接続した 1 Ω の電流検出抵抗器の電圧降下から求 め,データロガー (midi LOGGER GL800, GRAPHTEC 製) により記録する.

2.2 人工污染土壤

放射性 Cs に汚染された土壌を想定した人工汚染土壌 を作製する.人工汚染土壌には市販の園芸用黒土を使用 する.実験に使う土壌の粒径を均一にするために,黒土 を定温乾燥機(STAC-P50K,島津理化製)で72時間, 100℃で乾燥させた後、ミキサーにより粉砕し40 µm, 212 µm の大きさでふるい分ける.実験には Cs 含有割合 が高いと思われる粒径 40-212 µm の土壌を使用する.こ の乾燥した土壌の適量を未汚染土壌として使用する.

次に Cs 汚染土壌の作製方法について述べる. 40-212 µm の黒土に少量のイオン交換水と Cs 濃度が 50 ppm と なるように濃度 1002 mg/l の非放射性セシウム(¹³³ Cs) 標準液(和光純薬工業株式会社)を混合し,回転撹拌機 を用いて 24時間撹拌する.例えば,黒土が 400 g の場合, セシウム標準液は 20 ml(Cs 量 20 mg)混合することに なる. その後, 100℃の定温乾燥機で 72時間乾燥させ, Cs 汚染濃度 50 ppm の Cs 汚染土壌とする.

2.3 動電処理実験

汎用コンパクト電源(PMC500-0.1A, 菊水電子工業製) を用いて, 電極間に直流電界 200 V/m(10 V/5 cm)を7 日間印加する. 同時に動電処理による Cs 除去効果を確 認するためにコントロールとして直流電界を印加しない 土壌も7日間放置する. コントロールの場合も陽極, 陰 極は設置してある. 実験は一定の温度下で行う.

7日間の実験終了後,実験容器1では図4,実験容器2 では図5に示すように未汚染土壌およびCs汚染土壌を それぞれの層に分ける.その後,各層の土壌を回転撹拌 機で24時間撹拌し,前述の定温乾燥機を用い100℃で 72時間乾燥させる.乾燥後,後述する蛍光X線分析装 置によりCs濃度を測定する.測定は各土壌サンプルに おいて3回ずつ行い,その平均値をCs濃度とする.

Fig.3 Experimental apparatus.

図4 実験容器1における土壌区分

Fig.4 Soil chamber used for container 1.

図 5 実験容器 2 における土壌区分 Fig.5 Soil chamber used for container 2.

2.4 Cs濃度評価方法

Cs 濃度の測定には島津シーケンシャル形蛍光 X 線分 析装置(XRF-1700,島津製作所製)を使用する.まず, Cs 標準液を用いて Cs 濃度を 10 ppm, 50 ppm, 100 ppm に調整した Cs 汚染土壌を前述の作製手順に基づいて作 製する.その後,前述の蛍光 X 線分析装置を用いてそ の Cs 濃度を測定する.NET 強度の測定結果と既知濃度 値をもとに線形近似をし,Cs 濃度の検量線を作成する. 図 6 に作成した検量線を示す.実験後 Cs 濃度の算出に はこの検量線を使用する.検量線の決定係数は R² = 1.00 と算出された.

今回使用した蛍光 X 線分析装置では粉体中の重元素 の検出限界値が 5 ppm 程度であり、低濃度の測定には誤 差やばらつきが生じることが予想される.また、測定時 のサンプル量が実際の実験で使用するサンプルと比較し 非常に少量であることからばらつきが生じることが予想 される.そのため、ばらつきを減らすために実験終了後、 各層の土壌サンプルを人工汚染土壌作成と同様の手順で 72時間乾燥させ、その後 24時間撹拌する.

実験結果と考察

3.1 FEM-EK法 (実験容器1)

まず, 寸法の小さい実験容器1を使用しFEM-EK法 の効果を調べた. 前述したように直流電界を印加するも のと印加しないものを用意し実験を行った.

図7(a)に直流電界を印加した容器での実験期間中の 電流の経時変化を示す.時間経過に伴う電流値の減少が みられる.これは水の電気分解によるpHが7の領域の 生成や,間隙水中のイオン濃度の低下によるものだと考 えられる.

図7(b)に図4に示した①-③の各土壌層の実験終了後 のCs濃度を示す.図の点線はCs汚染土壌の初期濃度 である50 ppmを示している.動電処理を行った土壌で は①で56.6 ppm,②で52.6 ppm,③で3.18 ppmとなった. 一方,動電処理を行っていない土壌では①で56.8 ppm, ②で62.6 ppm,③で0 ppmとなった.動電処理を行った 土壌の①と②のCs濃度を比較すると,①の方が高い濃 度となっている.これは電気泳動,電気浸透によりCs が土壌上層へ移動したためだと考えられる.しかし,動 電処理を行っていない土壌では①より②の濃度が高くな

図 7 実験容器 1 での FEM-EK 法による Cs 除去の結果

Fig.7 Results of Cs decontamination by FEM-EK method at container 1.

	Weight of dried soil [g]		Cs quantity [mg]	
Soil layer	Control	FEM-EK treatment	Control	FEM-EK treatment
1)	173.4	170.1	9.85	9.63
2	168.9	172.6	10.6	9.08
3	148.4	151.2	0	0.480
total	490.7	493.9	20.45	19.19

表1 実験容器1における実験後の土壌の乾燥質量とCs量 Table 1 Amount of Cs in dried soil at container 1.

っている.これらは重力によって土壌中の間隙水が下層 へ移動した際,Csイオンも間隙水と共に移動したため だと考えられる.未汚染土壌層である③へのCsの移動 も同様の理由によるものであると考えられる.

次に、Cs 濃度と①-③の乾燥させた後の質量から①-③のCs 量を算出した.表1に乾燥後の土壌の質量およ び算出したCs 量を示す.動電処理を行った土壌ではCs 量が①で9.63 mg、②で9.08 mg、③で0.480 mgとなった. 動電処理を行っていない土壌ではCs 量が①で9.85 mg、 ②で10.6 mg、③で0 mgとなった.どちらの土壌でも添 加したCs 量である17.5 mgを合計のCs 量が上回ってい るが、これは検出限界を下回る濃度の測定や測定サンプ ル量による誤差やばらつきによるものだと考えられる. また、どちらの土壌でも実験開始時の土壌質量である 500 gを実験終了時の土壌質量の合計が下回っているが、 これは土が容器や電極に付着したためだと考えられる.

以上の結果から、直流電界を印加した場合、土壌上部の陰極付近の Cs 濃度が高いことから、Cs が陰極方向へ移動したことが確認される.よって今回の条件である200 V/m(10 V/5 cm)の直流電界を7日間印加する FEM-EK 法の処理効果は有為であると考える.

3.2 FEM-EK法 (実験容器2)

次に, 寸法の大きい実験容器2を使用しFEM-EK法 の効果を調べた. 前述したように直流電界を印加するも のと印加しないものを用意し実験を行った.

図 8(a)に直流電界を印加した容器での実験期間中の 電流の経時変化を示す.時間経過に伴う電流値の減少が みられる.これは水の電気分解による pH が 7 の領域の 生成や,間隙水中のイオン濃度の低下によるものだと考 えられる.また,図 7(a)と比較すると,電極間隔は同 じで電極の表面積が大きくなっているため,電極間のイ ンピーダンスが小さくなり,大きな電流が流れているこ とが分かる.

図 8(b)に図 5 に示した① - ⑦の各土壌層の実験終了後 の Cs 濃度を示す. 図の点線は Cs 汚染土壌の初期濃度 である 50 ppm を示している. 動電処理を行った土壌で

Soil layers of the experimental apparatus (b) Cs concentration in soil

図8 実験容器2でのFEM-EK 法によるCs 除染の結果 Fig.8 Results of Cs decontamination by FEM-EK method at container 2.

は①で 69.0 ppm, ②で 61.7 ppm, ③で 52.5 ppm, ④で 50.9 ppm, ⑤で 62.1 ppm, ⑥で 0.0318 ppm, ⑦で 0.168 ppm となった.一方,動電処理を行っていない土壌では ①で 58.1 ppm, ②で 52.5 ppm, ③で 57.6 ppm, ④で 46.8 ppm, ⑤で 45.6 ppm, ⑥で 0 ppm, ⑦で 11.8 ppm となった. 陰極に近い土壌上層①の Cs 濃度を比較すると、動電処 理を行った土壌の方が高い濃度となっている。これは電 気泳動, 電気浸透により Cs が土壌上層へ移動したため だと考えられる、また、動電処理を行っていない土壌で も表面側の① - ③でわずかに Cs 濃度が高くなっている. これは土壌表面付近の水分は蒸発しやすいため、これを 補うべく毛管現象により水が吸い上げられた可能性があ る. そのため, 汚染物質である Cs が土壌表面へ移送さ れた可能性がある.動電処理を行っていない④, ⑤の Cs 濃度が低いのは、未汚染土壌層である⑥、⑦に重力によ って土壌中の間隙水が移動したためだと考えられる.

次に, Cs 濃度と① - ⑦の乾燥させた後の質量から① -⑦の Cs 量を算出した.表 2 に乾燥後の土壌の質量およ び算出した Cs 量を示す.動電処理を行った土壌では Cs 量が①で 13.6 mg, ②で 12.2 mg, ③で 10.2 mg, ④で 9.78 mg, ⑤で 11.3 mg, ⑥で 0.006 mg, ⑦で 0.035 mg と なった.動電処理を行っていない土壌では Cs 量が①で 表 2 実験容器 2 における実験後の土壌の乾燥質量と Cs 量 Table 2 Amount of Cs in dried soil at container 2.

	Weight of dried soil [g]		Cs quantity [mg]	
Soil layer	Control	FEM-EK treatment	Control	FEM-EK treatment
1	197.0	196.9	11.4	13.6
(2)	197.6	197.1	10.4	12.2
3	196.5	194.1	11.3	10.2
(4)	195.6	192.0	9.15	9.78
(5)	190.3	182.4	8.68	11.3
6	194.3	192.2	0	0.006
7	205.4	212.3	2.42	0.035
total	1376.7	1367.0	53.35	57.121

11.4 mg, ②で 10.4 mg, ③で 11.3 mg, ④で 9.15 mg, ⑤ で 8.68 mg, ⑥で 0 mg, ⑦で 2.42 mg となった. どちら の土壌でも添加した Cs 量である 50 mg を合計の Cs 量 が上回っているが, これは検出限界を下回る濃度の測定 や測定サンプル量による誤差やばらつきによるものだと 考えられる. また, どちらの土壌でも実験開始時の土壌 質量である 1400 g を実験終了時の土壌質量の合計が下 回っているが, これは土が容器や電極に付着したためだ と考えられる.

以上の結果から、実験容器2を用いて直流電界を印加 した実験では①のCs量が15.4 mgと効果が顕著に現れ た.これは実験容器1と比較して、電極間のインピーダ ンスが小さくなることにより流れる電流値が大きくな り、間隙水中を移動するイオンが多くなったためだと考 えられる.よって今回の実験では、処理範囲を拡大して も動電処理効果が劣ることなく、効率が上昇しているよ うにも思える.つまり、FEM-EK処理法の実用化には十 分期待でき、セシウム除染に大いに役立つと言える.

4. まとめ

本研究では、Cs 汚染土壌の処理範囲を変更した場合 を想定し、FEM-EK 法による非放射性 Cs の除去効果を 検討した.処理範囲を大きく想定した実験容器の大きい 方が陰極方向への Cs の移動が顕著であった.この結果 から、FEM-EK 処理法の実用化には十分期待でき、Cs 除 染に大いに役立つと言える.

将来的には, 陰極にイオン吸着性を持った電極を使用 し, 土壌表面に集めた Cs の回収を容易にすることを目 標としている. また, 従来の EK 施工法ではボーリング 孔の掘削後,電極棒等を地中に挿入していた.それに対 し本手法では,陽極を地中に挿すことのできる針型の電 極にすることで,施工が簡単で装置の設置を容易にする ことも目標としている.

謝辞

本研究を進めるにあたり,数々の技術的御指導および 御助言を頂きました秋田産業技術センターの遠田幸生氏 および沓名潤子氏に深く感謝致します.

参考文献

- 吉田 隆:放射性物質対策技術 除去,モニタリング装置・システム開発,NTS (2015)
- 2) 中尾 淳:放射能除染の土壌科学一森・田・畑から家庭 菜園まで― セシウムの土壌吸着と固定,日本学術協力 財団(2013)
- 3) 鈴木雅史, 昌子智由, 吉村 昇:動電現象を用いた重金 属回収に関する研究. IEEJ Trans. FM, **125** [4] (2005)
- 4) 平田健生,前川統一郎:土壌・地下水汚染―原位置浄化 技術の開発と実用化―,64-65,シーエムシー出版
- 5) 齋藤勝裕:東日本大震災後の放射性物質汚染対策,NTS (2012)
- 6)斎藤公明,青木和弘,谷畑勇夫:土壌中における放射性 物質の深度分布の確認,国立研究開発法人日本原子力 研究開発機構福島研究開発部門,https://fukushima.jaea. go.jp/initiatives/cat01/pdf05/02-03.pdf
- 日本原子力研究開発機構:原子力機構の開発成果 2013, http://jolisfukyu.tokai-sc.jaea.go.jp/fukyu/review_jp/2013/pdf/ all.pdf
- 8) 三浦智彰, カビールムハムドゥル, 中島春介, 森 茂久, 鈴木雅史:中山間地の斜面を想定した動電学的手法によ る汚染土壌からのセシウム除去. IEEJ Trans. FM., 135[11] (2015)
- 9) 三浦智彰, カビールムハムドゥル, 鈴木雅史, 中島春介, 森 茂久:汚染土壌からの動電学的手法によるセシウム 除去に及ぼす有機酸の影響. 静電気学会誌, 40[1](2016)
- 10) 岸田拓也, カビールムハムドゥル, 鈴木雅史, 中島春介: 水平電極式動電法を用いた汚染土壌の修復. 静電気学会 誌, 41 [1] (2017)
- 畠山喜考, カビールムハムドゥル, 鈴木雅史, 中島春介: 天然ゼオライトとくん炭を用いたフレキシブルイオン吸 着電極の作成. 静電気学会誌, 41 [2] (2017)