J. Inst. Electrostat. Jpn.

気液界面を通した有機物分解処理における液相撹拌の効果

溝口 秀彰*,1,竹内 希*

(2015年9月17日受付;2016年1月27日受理)

The Effect of Liquid-Phase Stirring in the Decomposition Processes of Organic Compounds through a Gas–Liquid Interface Hideaki MIZOGUCHI^{*,1} and Nozomi TAKEUCHI^{*}

(Received September 17, 2015; Accepted January 27, 2016)

Liquid-phase stirring seems to be an effective method for achieving high-efficiency decomposition of organic compounds in water using active species generated by plasmas. However, the effect of the stirring is not fully understood. Therefore, we conducted two types of experiments: ozone aeration and plasma generation on a gas-liquid interface. In the ozone aeration experiment, the amount of the dissolved ozone in pure water and the decrease of methylene blue concentration were compared with and without liquid-phase stirring with a magnetic stirrer. We found that the dissolution rate of ozone and the decomposition rate of methylene blue both increased with liquid-phase stirring. In acetic acid decomposition using plasma generated between a needle electrode and a water surface, on the other hand, the decomposition rate without liquid-phase stirring was about the same as that with liquid-phase stirring because of the liquid-phase flow induced by the plasma generation.

1. はじめに

現在,わが国の下水処理場や浄水場では,一般的に塩 素やオゾンによって水処理を行っている.しかし,近年 問題となっているダイオキシンなどの水中難分解性有機 物はオゾンを用いても分解できないものが存在する.そ こで,オゾンよりも酸化力の強い OH ラジカルを用いた水 処理法である,促進酸化処理(AOP: Advanced Oxidation Process)の研究が行われている.OH ラジカルの生成に はオゾンと紫外線,あるいは過酸化水素を組み合わせた 方式や,放電によりプラズマと水を直接反応させる方式 が存在する^{1,2)}.

この中でも処理方式の一つとして挙げられる,針対水 面での放電による酢酸分解では,全有機炭素(TOC: Total Organic Carbon)分解効率で12 groc/kWhという研 究報告がある¹⁾一方で,筆者らの同方式での酢酸分解効 率は4.3×10⁻¹ groc/kWhにとどまっており,更なる高効 率化への検討が必要である.効率向上には,放電で生成 される OH ラジカル等の活性種を液相中へ輸送し,効率 よく分解対象物と反応させる必要性がある³⁾.そこで, 液相の撹拌は気体の溶解を促進するため⁴⁾,処理効率向

キーワード:液相撹拌,オゾン,メチレンブルー,酢酸分解,液中流動

* 東京工業大学

- (〒152-0033 東京都目黒区大岡山 2-12-1)
- Tokyo Institute of Technology, Ookayama, Meguroku, Tokyo 152-0033, Japan

¹ mizoguchi.h.ab@m.titech.ac.jp

上の一つの手段となりえる.しかし,分解処理中に液相 の撹拌を行っているケース¹⁾は存在するが,気液界面を 通した分解処理において,液相の撹拌が有機物分解に与 える影響は未解明のままである.

本論文では、オゾン曝気によるメチレンブルー分解な らびにオゾンの純水への溶解量測定、針対水面直流放電 による酢酸分解を通して、液相撹拌の有無が気液界面を 通した分解処理に与える影響を比較検討することを目的 とした.

2. 実験装置と評価方法

2.1 オゾン曝気によるオゾンの純水への溶解量なら びにメチレンブルー分解量測定

図1にオゾン曝気実験の実験構成を示す.

図1 オゾン曝気実験構成

Fig.1 Experimental setup for ozone aeration.

十字型のリアクタは高さ 100 mm,内径 26 mmのホウ ケイ酸ガラス製で、処理液量は 20 mL である.リアク タの下にマグネティックスターラー(MASUDA, SM-15C)を設置し、リアクタ内には長さ 11.2 mm,直径 4 mmの回転子を投入した.また、スターラーの回転数を 上昇させていくと、ある回転数を境にして液相に渦が生 じる.これにより、気相と液相の接触表面積がスターラ ーの回転数により変化してしまう.そこで、今回は 2枚 の邪魔板をリアクタ内に挿入することで、液相の渦の発 生を妨げ、気相と液相の接触表面積の変化を最小限にと どめている.実験で用いた邪魔板はアクリル製で、板の 下端がリアクタ底部に接触するように長さ 11.2 cmとし た.さらに、邪魔板の幅は撹拌所要動力(流体に投入さ れるエネルギー)が最大となる、永田の完全邪魔板条件 を満たす 6 mmの幅とした⁵.

また,スターラーの回転数は,0,400,1600,3000 rpm に設定した.メチレンブルー初期濃度は80 mg/L,処理 時間は5,10,15分として実験を行った.リアクタへ供給 するオゾンの濃度は,60 g/m³に設定した.

気相中のオゾン濃度の測定にはオゾン濃度計(荏原実 業, EG-600)を,溶存オゾン濃度の測定には,簡易 O₃ 濃度測定用試薬(共立理化学研究所,WAK-O₃)ならび にデジタルパックテスト(共立理化学研究所,DPM-O₃) を使用した.また,メチレンブルー濃度は,分光光度計 (日本分光,V-630)を用い,吸光光度法により測定した.

2.2 針対水面直流放電による酢酸分解

図2に針対水面直流放電の実験回路図を示す.

リアクタは、オゾン曝気と同じものを用い、リアクタ 上部から高電圧側電極として針電極を挿入し、針先端と 処理液面との距離を1mmに設定した.また、本実験に おいてもリアクタ内に邪魔板を挿入している.これは、

図2 酢酸分解実験構成

Fig.2 Experimental setup for acetic acid decomposition.

図 3 酢酸分解 リアクタ図 Fig.3 Schematic of the reactor configuration.

スターラーの回転数を上昇させた際に液相に生じる渦に よって,針電極と液面とのギャップ長が変化してしまう のを防ぐためである.図3にリアクタ図を示す.

電源は直流電源 (MATSUSADA, HAR-5R60) を使用し, バラスト抵抗 200 kΩ, リアクタ, 電流測定用抵抗 1 kΩ を直列に接続した. リアクタの高電圧電極の電圧は高電 圧プローブ (Tektronix, P6015A) を用いて測定し, リア クタ電流は接地側電極の電圧を電圧プローブ (Tektronix, TPP0201) で測定し, 電流測定用抵抗の抵抗値で除した 値を用いた.

また、マスフローコントローラ(Kofloc, MODEL8300) を介して、ガスボンベから流量 100 sccm でアルゴンガ スをリアクタへ供給した. 酢酸初期濃度は 10 mgroc/L, 処理時間は 30,60分,スターラー回転数は 0,400,3000 rpm とした. また、実験は電流制御値 10 mA で行った. この時の電圧電流波形を図 4 に示す. 酢酸分解は、TOC

図4 電流電圧波形

Fig.4 Voltage and current waveforms.

計 (Sievers,810) を用いて処理液の TOC 濃度を測定す ることで評価した.

2.3 液中流動の観測

酢酸分解実験において,放電による液中の流動が発生 したため、リアクタ内にトレーサ粒子を入れ、レーザシ ート光を照射することで撹拌を行わない場合の液中の流 動を観測した.実験構成を図5に示す.

図 5 流動観測 実験構成

Fig.5 Experimental setup for flow observation.

トレーサ粒子は Thermo Fisher Scientific 社の粒径 42 µm, 粒子密度 1.05 g/cm³のポリスチレン粒子を用いた. また, 光源には He-Ne レーザ(MELLES GRIOT 製, 波 長 632 nm, 最大電力 5 mW)を使用し, レーザ光をシ リンドリカルレンズで広げることでレーザシート光を生 成した. このレーザシート光をリアクタへ照射し, トレ ーサ粒子の挙動をデジタルカメラ(CASIO, EX-F1)で 撮影した. また, 撮影した動画を IDT 社の PIV(Particle Image Velocimetry)システム 用ソフトウェアである proVISION-XSを使用して解析し, 液中流動を可視化した.

2.4 評価方法

オゾン曝気実験におけるオゾンの溶け込みは移動係数 による比較を行った.気液界面輸送による濃度変化は, 液相への一方拡散を仮定し,発散項を考慮しない場合, 以下のように表せる^{6,7)}.

$$\frac{dC_{\rm aq}}{dt} = \frac{k_{\rm c}S}{V_{\rm aq}}C_{\rm gas} \tag{1}$$

ただし、物質の気相濃度を C_{gas} [mol/L],液相濃度を C_{aq} [mol/L],処理液の体積を V_{aq} [cm³],移動係数を k_e [cm/s],気液界面面積を S [cm²] とする.

各実験条件での移動係数k。を求めて比較を行う.また, メチレンブルー分解の場合,気液界面を通した移動は化 学反応を伴うため,吸収速度は物理吸収速度の反応係数 β(>1) 倍となり,以下のように表せる.

$$\frac{dC_{\rm aq}}{dt} = \beta \frac{k_{\rm c}S}{V_{\rm aq}} C_{\rm gas} \tag{2}$$

ゆえに、メチレンブルー分解実験では反応係数βを求め 比較する.また、メチレンブルーの分解は実際には複雑 な反応過程を経るが、今回は簡単のため、メチレンブル ー濃度の減少量とオゾンの溶解量が等しいものとして計 算した.

3. 実験結果と考察

3.1 オゾン曝気によるオゾンの純水への溶解量ならび にメチレンブルー分解量測定

スターラー回転数を変化させた時の,オゾンの純水へ の溶解量の時間変化を図6に示す.スターラー回転数が 高くなるほど,オゾン溶解の速度が速くなっていること が分かる.また,曝気時間が長いほどオゾン溶解量は大 きくなった.

続いて、同実験における移動係数 & による比較を図 7 に示す.ただし、移動係数の算出には 0~5分における 溶存オゾン濃度の時間変化の値を用いた.図 7 より、移 動係数はスターラー回転数が高いほど、大きな値を示し ていることが分かる.

液体の量が少ない撹拌槽における物理吸収の速度は, 気液の接触時間が短く,接触表面の更新が盛んであるほ ど大きくなると考えられている⁸⁰. つまり,この結果か ら液量の少ない本実験系において,気液の接触時間は回 転数が高いほど短くなっていると推測される.これによ り、オゾンの溶け込みが促進されていると考えられる.

さらに、メチレンブルー分解時(化学反応を伴う反応 吸収)のメチレンブルー濃度の時間変化を図8に示す. この結果から、回転数が高いほど濃度減少が速くなる

図6 溶存オゾン濃度の時間変化

Fig.6 Dissolved concentration of ozone as a function of time.

図7 回転数に対する移動係数

Fig.7 Comparison of transfer coefficients of ozone.

図8 メチレンブルー濃度の時間変化

Fig.8 Methylene blue concentration as a function of time.

ことが分かる.また、回転数400 rpmの15分処理は回 転数1600 rpmの5分処理と比較すると、図6において はオゾンの溶け込み量が多い一方で、図8においてはメ チレンブルーの分解量が少なくなった.メチレンブルー 分解量がオゾン溶解量と等しいと仮定すると、この原因 は両条件での反応係数βの違いが効いているものと考え られる。

続いて、同実験における反応係数βの比較を図9に示 す. 図7の移動係数の比較においては、スターラー回 転数が高いほど大きな値を示していた一方で、図9より、 反応係数は1600 rpm で飽和状態となり、3000 rpm の場 合でも同程度の値となった。400 rpm の場合に10,15分 処理時の反応係数が低下している原因は、十分な撹拌が なされなかったことで、分解が進むにつれメチレンブル ー濃度が均一化されなくなったためであると考えられ る、また、オゾンの溶解は2重境膜説によって説明され る気液間の物質移動からなるため⁹、水中部分と比較し

図 9 回転数に対する反応係数 Fig.9 Comparison of reaction coefficients of ozone.

てオゾン濃度の高い液側境膜において、メチレンブルー との反応が主に生じていると考えられる.そのため、液 中に溶解したオゾンの量ならびにメチレンブルー濃度の 均一化の二つが、分解反応を促進していると考えられる.

3.2 針対水面直流放電による酢酸分解

スターラー回転数を変化させた時の,TOC 濃度の時 間変化を図 10 に示す.TOC 濃度の時間変化は,撹拌の 有無ならびにスターラーの回転数によらず,同程度の値 となった.

続いて,スターラー回転数を変化させた時の,消費電 力量の時間変化を図11に示す.消費電力量は,撹拌を 行わない場合が最も高くなった.また,撹拌を行った場 合は回転数によらずほぼ同程度の値となった.この要因 としては,撹拌を行った場合に生じる液相表面の振動に よって,針電極と液相表面のギャップ長がわずかに短く なり,消費電力量が小さくなった可能性が考えられる.

図 10 TOC 濃度の時間変化 Fig.10 TOC concentration as a function of time.

図 11 消費電力量の時間変化 Fig.11 Energy consumption as a function of time.

図 12 酢酸分解効率の時間変化

Fig.12 Decomposition efficiency as a function of time.

以上の実験結果から,酢酸分解効率を算出したグラフ を図12に示す.ただし,酢酸分解効率 η_e [groc/kWh]は 以下の式で求めた.

$$\eta_{\rm e} = \frac{V_{\rm aq} \Delta C_{\rm d}}{P \Delta t} \tag{3}$$

ここで, *ΔC*_dは TOC 濃度減少量 [groc/L], *Δt* は処理時間 [s], *P* は消費電力 [W] を示す.

酢酸分解効率は、30分処理、60分処理時ともにどの 条件においても同程度であり、スターラーを用いた液相 撹拌による、酢酸分解促進効果は表れなかった。

3.3 液中流動の観測

スターラーによる液相撹拌を行わない場合の放電時の 液中の流線を図13に示す.この写真から,放電によっ てリアクタ上部に渦をなすような規則的な流動が発生し ていることが確認できる.その一方で,リアクタの下層

図 13 放電時の液中の流線(露光時間 1/1.6秒) Fig.13 Image of liquid-phase flow direction induced by discharge.

図 14 放電時の液中流動の方向 Fig.14 Water flow induced by discharge.

には規則的な流動が見てとることができなかった.

また,この流動の動画を撮影し,PIV 用ソフトウェア proVISION-XS で解析した処理液中の流速ベクトルを図 14 に示す.この図から,液相上部の渦状の流れが,プ ラズマと液面の接触部から気液界面に沿って,リアクタ 壁面へ向かう方向に生じていることがわかる.また,こ の時の流速は,プラズマと液面の接触部付近の壁面へ向 かう流れが最も速く,約 3.5 cm/s であった.

上記のような流れが生じるのは、次のようなプロセス によるものだと考えられる¹⁰⁻¹²⁾.まず、放電により気相 中にプラズマと液面の接触部から壁面へ向かう流れが生 成される.この気相の流れと液相の間の摩擦により、液 相上部にも壁面方向へ向かう流れが生成される. さらに, この流動が壁面と衝突することで, リアクタ壁面から再 びリアクタ中央へ向かう流れが生じる. そして, リアク タ中央へ向かう流れが衝突することで液面方向へ上昇す る流れとなり, リアクタ上層部に渦状の流れが発生して いると考えられる.

放電による酢酸分解実験では、オゾン曝気によるメチ レンブルー分解実験とは異なり、液相撹拌による分解促 進の効果が確認できなかった.この原因は、上述した放 電によって液相中に生じた流れにあると考えられる.今 回用いた小容量のリアクタにおいては、液相撹拌を行わ ない場合でも、放電によって生成される液相の流れによ って、処理液中の酢酸濃度の均一化が十分に行われてお り、また、処理液中でのOH ラジカルの寿命が短いこと から、液相撹拌によるOH ラジカルの輸送促進効果が得 られない.よって、スターラーを用いた液相撹拌による、 酢酸分解促進効果は表れなかったと考えられる.

4. 結論

純水へのオゾン溶解量測定から、スターラーによる液 相撹拌が物理吸収において活性種溶け込みを促進するこ とを確認した.また、スターラーの回転数が高いほど、 物質移動係数は大きくなり、溶け込み促進の効果が高く なっていることが確認された.さらに、メチレンブルー 分解時の濃度減少は、スターラー回転数が高いほど速く なっていることが確認できた.その一方で、反応係数の 計算の結果、その値は回転数に依存せず同程度となり、 液相撹拌による分解反応促進の効果は回転数によらず同 程度であった.

オゾン曝気実験でスターラーによる液相撹拌の効果が 確認された一方で、針対水面直流放電による酢酸分解に おいては、スターラーによる液相撹拌は分解速度の向上 に効果がないという結果となった.この原因としては、 放電によって生じる液中流動が観測されたことから、本 実験で用いたような小容量のリアクタにおいては、スタ ーラーを用いない場合でも、十分に液相が撹拌されてい ることが考えられる.

参考文献

- T. Iijima, Y. Okita, K. Kubo, R. Makise and T. Murata: New Oxidation Technology by Using OH Radical with Long Lifetime in Plasma, IV.2.7, IOA 17th World Ozone Congress, Strasbourg (2005)
- J. Prado and S. Esplugas: Comparison of Different Advanced Oxidation Processes Involving Ozone to Eliminate Atrazine. Ozone Science & Engineering, 21 (1998) 39
- N. Takeuchi, M. Ando and K. Yasuoka: Investigation of the Loss Mechanisms of Hydroxyl Radicals in the Decomposition of Organic Compounds Using Plasma Generated over Water. Jpn. J. Appl. Phys., 54 (2015) 116201
- 佐藤志美雄、中尾勝実、大竹伝雄:流通式自由表面撹拌 層による気液反応速度の解析.化学工学、34 (1970) 505
- 5) 化学工学会:最新 ミキシング技術の基礎と応用, p. 201, 三恵社 (1988)
- S. Daito, F. Tochikubo and T. Watanabe: Improvement of NOx Removal Efficiency Assisted by Aqueous-Phase Reaction in Corona Discharge. Jpn. J. Appl. Phys., 39 (2000) 4914-4919
- 7) T. K. Sherwood, R. L. Pigford and C. R. Whilke: Mass transfer, p. 33, McGraw-Hill (1975)
- 8) 只木力,前田四郎:表面更新説に関する 2,3 の考察.化
 学工学,28 (1964) 864
- 9) 日本オゾン協会:オゾンハンドブック, p. 59, サンユー書房 (2004)
- R. Ohyama, K. Inoue and J. S. Chang: Schlieren Optical Visualization for Transient EHD Induced Flow in a Stratified Dielectric Liquid under Gas-Phase ACac Corona Discharges. J. Phys. D: Appl. Phys., 40 (2007) 573
- T. Shimizu, Y. Iwafuchi, G. E. Morfill and T. Sato: Transport Mechanism of Chemical Species in a Pin-water Atmospheric Discharge driven by Negative Voltage. J. Photopolym. Sci. Technol., 24 (2011) 421
- S. Kanazawa, H. Kawano, S. Watanabe, T. Furuki, S. Akamine, R. Ichiki, T. Ohkubo, M. Kocik and J. Mizeraczyk: Observation of OH Radicals Produced by Pulsed Discharges on the Surface of a Liquid. Plasma Sources Sci. Technol., 20 (2011) 034010