J. Inst. Electrostat. Jpn.

文

論

無声放電のバリアに用いた多孔質陽極酸化アルミナ の構造が NOx 処理に及ぼす影響 川崎 敏之^{*,1},山田 智士^{*},若松 翔平^{*},小石 貢司^{*},調 潤一^{*} (2011年9月12日受付;2011年10月27日受理) Influence of Structure of the Anodic Porous Alumina Barrier on NOx Treatment in a DBD Reactor

Toshiyuki KAWASAKI,^{*,1} Satoshi YAMADA,^{*} Shohei WAKAMATSU,^{*} Kouji KOISHI^{*} and Junichi SHIRABE^{*}

(Received September 12, 2011; Accepted October 27, 2011)

Porous ceramics in a DBD reactor are useful not only for catalyst support but also for particulate collection and gas adsorption. They also play an important role in the DBD characteristics and plasma chemical reactions. In this study, anodic porous alumina with many straight nanopores has been focused as the barrier of a DBD reactor. Its unique and controllable nanostructure is interesting in applying to the barrier, and also enables one to study the relationship between the DBD and nanostructures systematically. In this paper, the influence of the barrier structure on the NOx treatment was studied using the anodic porous alumina barriers. The relationship was observed between the NO removal rate and discharge power which mainly depends on the change of relative dielectric constant ϵ_r with the barrier structure. The unique change of the discharge power in film thickness between 16 and 33 μ m was obtained only using the pore-widening barrier. That had direct effects upon the NO removal rate. The NO₂ adsorption on the barrier was increased with increasing its thickness (\Rightarrow pore depth). However, it seemed that little NO₂ was adsorbed on it in the case of the pore-widening barrier with thickness below 16 μ m.

1. はじめに

放電プラズマと様々な多孔質材料との併用に関する研究 が行われている¹⁻³⁾.特に多孔質セラミックスをバリアなど として組み合わせた無声放電 (DBD) は,有害ガス処理装置 等への応用が期待され,今まで多くの研究報告がなされてき た⁴⁻⁸⁾. DBD 反応器の中にある多孔質セラミックスは,放電 プラズマの発生に必要である場合が多く,さらには触媒担体, 粒子捕集,ガス吸着等としての役割も担っているため,放電 特性やプラズマ化学反応に対して重要な影響を及ぼす⁹⁾.し かしながら,具体的にどのような影響を及ぼすのかは不明な 点が多い.これらを明らかにすることは,DBD 反応器の性能 向上のための重要な研究課題である.そこで,本研究では上 記課題を調べることを目的に,DBD のバリアとして多孔質陽 極酸化アルミナに着目した.

キーワード:大気圧非熱平衡プラズマ,無声放電,NOx 処理,ポーラス材料,陽極酸化アルミナ,

- * 日本文理大学工学部機械電気工学科(870-0397 大分県 大分市一木1727)
 Department of Electrical and Electronic Engineering, Faculty of Engineering, Nippon Bunri University, 1727 Ichigi, Oita 870-0397, Japan
- ¹ kawasaki@nbu.ac.jp

多孔質陽極酸化アルミナは、アルミニウム(Al)を酸性電 解溶液中で陽極酸化することによって、自己組織化ボトムア ップ的に形成される^{10,11)}.多孔質陽極酸化アルミナの模式 図を図1に示す. Al 基板上に形成される陽極酸化アルミナ 層は、孔径がナノオーダーで高アスペクト比を有する直行細 孔が配列したハニカム構造となる.

多孔質陽極酸化アルミナに関しては多くの先行研究があ る. 直行細孔の径,深さ,及び間隔は,陽極酸化電圧・時間, 電解液種類・温度,および後処理により比較的自由にナノオ ーダーで制御可能である¹²⁻¹⁴⁾.また,その規則的に配列され た直行細孔を利用したマイクロ・ナノテクノロジーに関する 研究^{15,16)}や触媒担体として利用する研究^{17,18)}が行われている.

図1 多孔質陽極酸化アルミナの模式図 Fig.1 Schematic diagram of anodic porous alumina.

図2 作製した陽極酸化アルミナの SEM 写真

Fig. 2 Typical SEM photographs of the anodic porous alumina (a) without aftertreatment (Average pore diameter : 11 nm), (b) with pore-widening treatment (Average pore diameter : 22 nm) and (c) with pore-sealing treatment.

一方,DBD と多孔質陽極酸化アルミナの併用に関する研究は極めて少ない¹⁹⁻²²⁾.他の材料にない特徴的な構造とその 制御性を有する多孔質陽極酸化アルミナを DBD のバリアと して使用することは,他の材料では困難な検討を可能にする. また,近年注目されているマイクロ・ナノ界面・空間でのプ ラズマ技術^{23,24}にも関連深い結果が得られると期待される.

本研究では今までも多孔質陽極酸化アルミナをバリアに 用いた DBD に関する研究を進めてきた²⁵⁻²⁷⁾. 今回, バリア に用いた多孔質陽極酸化アルミナの構造(細孔の有無, 膜厚 (≒細孔深さ), 細孔径)を, 陽極酸化条件や化学的後処理 によりマイクロ・ナノオーダーで制御し, それが NOx 処理 に与える影響を調べた.

2. 実験装置および方法

2.1 バリアとしての陽極酸化アルミナ

純度99.99%のAI基盤(20 mm×60 mm, 1.2 mm厚)を陽 極酸化の材料として用いた.まず, AI基盤の陽極酸化面を, 60%過塩素酸/エタノール混合溶媒(体積比1:4,初期温 度0°C以下)中,定電流100 mA/cm³,3 minの条件で電解研 磨した. その後, 硫酸 (濃度 1.0 M, 温度 10℃) 中に浸 漬し, 直流 24 V一定で陽極酸化を 0.2-5.0時間の範囲で行 った. この条件下で膜厚(Sanko, EDY-1000により測定) は 6-143 µmの範囲で変化し, 陽極酸化時間に関係なく平 均孔径約 11 nmの細孔を有する多孔質陽極酸化アルミナ が形成される.その表面,断面の代表的な SEM写真(Jeol, JSM-7400Fにより観察)を 図2(a)に示す. 陽極酸化後にポ アーワイドニング処理(30 ℃の5 wt%リン酸に20 min浸漬 することによる孔壁のエッチング)により孔径を拡大した ものも用意した.この処理により平均孔径は約 22 nmとな る. その表面, 断面の代表的なSEM写真を図2(b)に示す. 細孔の有無が NOx処理に与える影響を明確にするため、

表1 本研究で使用した陽極酸化アルミナの膜厚 Table 1 Film thickness of the anodic alumina barriers prepared in this study.

Anodizing time [hour]		0.2	0.5	1.0	3.0	5.0
Film Thickness [µm]	Without aftertreatment (Pore \u03c6 11 nm)	6	16	33	89	143
	Pore-widening (Pore ϕ 22 nm)	6	16	34	89	144
	Pore-sealing (Without pores)	6	16	34	87	144

封孔処理(沸騰蒸留水に30 min浸漬することによる孔内や 表面への水和アルミニウム酸化物生成)により細孔を塞い だものも用意した.その SEM写真の図2(c)に示す.この処 理により,図2(a),(b)で観察された直行細孔が,表面だけ でなく深部にわたって塞がれているのがわかる.今回,表 1に示すように,各陽極酸化時間において後処理が異なる3 種類,計15種類の構造が異なる陽極酸化アルミナを用意し た.本論文中で膜厚を示す場合は,各陽極酸化時間の代表 として後処理なしの膜厚を用いるものとする. LCRメー ター(HP,4261A)を用いて,陽極酸化アルミナの比誘電 率εr(測定周波数 1 kHz)を調べた.

2.2 無声放電型プラズマ反応器

表1に示した15種類の陽極酸化アルミナをそれぞれ片方 のバリアに用いたDBD反応器で実験を行った.図3にその 反応器の模式図を示す.AI基盤とそれに形成された陽極酸化 アルミナをそれぞれ高電圧側電極,バリアとした.もう一方 のバリアには一般的なアルミナ(厚さ1mm)を用いて,そ の片面に貼ったアルミニウムテープを接地電極とした.バリ ア間距離は1mm一定,電極面積は10mm×20mmである. 信号発生器(Iwatsu, SG-4105)と増幅器(Trek, 20/20C)で

発生させた100 Hz正弦波交流高電圧により DBDを発生させ た. 接地側に直列接続した 100 nF のコンデンサを用いてオシ ロスコープ (Lecroy, LT374M) に描いた V-Q リサージュ図 形の面積から放電電力を求めた.

2.3 ガス供給と分析系

図4にガス供給と分析に関する概略図を示す.処理ガス NO (100 ppm) / O2 (20%) / N2を流量1.0 L/min (フロート式 流量計で調整)で反応器へ供給した.ガス濃度については, オゾン除去装置通過後,NOx濃度計(Test, 350XL)により NO, NO₂, O₂濃度, ガスクロマトグラフ (Shimadzu, GC-8A) によりN2O濃度を測定した.オゾン除去装置はNO2濃度測

Pore-widening

Aftertreatment (a)

Pore-sealing

実験結果および検討 3.

NO 除去と放電電力 3.1

図5(a), (b)にそれぞれ膜厚16 µm, 143 µmの陽極酸化ア ルミナをバリアに用いた場合の、後処理とNO除去率の関 係を示す.図5(a)の場合、同印加電圧値において同様な NO除去率を示していることから、後処理の影響は小さい と思われる.一方,図5(b)の場合では後処理が NO除去率 に影響を及ぼした.後処理なしのバリアに比べてポアーワ イドニング処理したバリアでは NO除去率は減少, 封孔処 理したバリアでは増加した.これは全ての印加電圧値にお いて同様な傾向を示した.よって、図5(a)、(b)に示される 結果より, 膜厚16-143 μmの間で後処理とNO除去率の関係 は変化していることがわかる.

図6に膜厚16-143 µmの間における両者の関係を示す.印 加電圧は8.0 kVo-pの場合である.封孔処理したバリアを用い た場合の NO 除去率が, 後処理なしのバリアを用いた場合よ り高いという傾向は全ての膜厚において示された.一方,後 処理なしとポアーワイドニング処理したバリアが示す NO 除去率の高低関係が, 膜厚 16-33 µm の間で変化しているこ とがわかる. このことから, ポアーワイドニング処理が NO 除去率に与える影響は膜厚によって異なることがわかる.

ここで、NO 除去率に影響を与える放電電力について調べ た. 図7(a), (b)にそれぞれ横軸を後処理, 膜厚とした場合の 放電電力を示す. 図 7(a)は図 6 に示された各 NO 除去率が得 られた時の放電電力を示す. 図7(b)には参考として、電解研 磨のみ(陽極酸化なし)のものを使用した場合の放電電力を 膜厚 0 μm としてプロットした. 図 7(a)より, 膜厚 33 μm 以 上の範囲における後処理と放電電力の関係は、NO 除去率の

6.0 kVo-p

Without

50

40

30

02

Fig. 5 Influence of the pore-widening and pore-sealing treatment on NO removal rate using the anodic alumina barriers with a thickness of (a) 16 µm and (b) 143 µm.

図 6 後処理・膜厚と NO 除去率の関係 Fig. 6 Influence of aftertreatments on the NO removal rate at a voltage of 8.0 kVo-p.

場合と同様であることがわかる. さらに, 膜厚 16-33 µmの 間で後処理との関係が著しく変化する点においても同様で ある. これは, 図 7(b)からわかるように, ポアーワイドニン グ処理したバリアが示す放電電力が, 他と比べ膜厚 16-33 µm の間で特に著しく変化することに起因していると考えら れる. その結果, 膜厚 33 µm 以上では明確であった後処理に よる放電電力の違いが, 膜厚 16 µm 以下になると後処理に関 係なく, ほぼ同程度の放電電力を示すようになる. このよう な放電電力の変化が, 図 6 に示す NO 除去率特性と深い関係 にあると考えられる.

一般的に無声放電等のように電極間に誘電体材料が挿 入されている場合,その材料の εrや tanδのような電気的特 性は放電電力に影響を与える.特に Er は先行研究でも多く 取り上げられている²⁸⁾. そこで今回は,本実験で使用した 陽極酸化アルミナ全ての & について調べた. その結果を図 8 に示す.全ての膜厚において, & は封孔処理,後処理な し、ポアーワイドニング処理の順で大きい.これは封孔処 理で空気層が減り εr は増加, ポアーワイドニング処理では 逆に空気層が増え & は減少したと思われる.また膜厚の減 少にともなって εrは全体的に減少し、特に膜厚 33 μm よ り薄くなると減少率は増加する傾向にあった. その中でも 封孔処理したバリアの εr は他と比べ著しく減少した. その 結果, 膜厚 16 µm 以下になると後処理による & は差は小さ くなり、図7(b)に示したように放電電力への影響も小さく なったと考えられる.しかしながら,図7(b)に示した,ポ アーワイドニング処理したバリアを用いた場合の膜厚 16-33 µm における放電電力の著しい変化を, & だけでは説 明することは困難である.構造が放電の発生に直接的に関 与している可能性もあるが現状では明らかでない.これに 関しては別途詳細に調べる必要がある.

図7 後処理・膜厚と放電電力の関係

Fig. 7 Discharge power characteristics *versus* (a) aftertreatment and (b) film thickness at a voltage of 8.0 kVo-p.

図8 陽極酸化アルミナの比誘電率 Er Fig.8 Er of the anodic alumina barriers prepared in this study at a measuring frequency of 1.0 kHz.

3.2 NO2のバリアへの吸着

予備実験より NO濃度の減少は NO2への酸化が支配的で, NO2の一部はバリアに吸着することがわかっている.また今回の実験範囲では N2O は検出されなかった.ここでは,バ

リアの構造と NO2吸着との関係を調べた.

図 9(a), (b)にそれぞれ膜厚 16 µm, 143 µm の陽極酸化アル ミナをバリアに用いた場合の, NO 除去率と正規化 NOx (NO +NO2) 濃度 (NOx 初期濃度を1として正規化)の関係を示 す. 図中の波線は正規化 NOx 濃度1を示し,それを超えれ ば NOx 発生,下回れば NO2吸着を意味する.図9(a)の場合, NOx 濃度の増減が若干あるものの,全てがほぼ波線に沿って いることから NO2の吸着は極めて少ないと考えられる.一方, 図9(b)では後処理の影響が明確に示された.封孔処理したバ リアは細孔が塞がれているため NO2の吸着はほとんど起こ らない.一方,後処理なし,ポアーワイドニング処理のバリ アには NO2が吸着し,それは孔径にも影響受けることがわか る. 孔径による比表面積の変化が NO2吸着に影響を与えてい ると思われる.

図 10 にポアーワイドニング処理したバリアの膜厚(≒細 孔深さ)が吸着に及ぼす影響を示す. 陽極酸化アルミナの影 響を明確にするため, 電解研磨のみ(陽極酸化なし)のもの を使用した場合を膜厚 0 µm として示した. 膜厚 0 µm では

Fig. 10 Relationship between the normalized NOx concentration and the NO removal rate using the pore-widening barriers.

NOx は発生する傾向にあり, 陽極酸化アルミナによって発生 を抑制できることがわかる. パックドベッド型反応器の電極 を誘電体で覆うと NOx の発生が抑制されるとの報告がある ^{29,30)}.反応器構造は異なるが,これとの関連性については今 後詳細な検討が必要である. 膜厚が厚いほど吸着量は増加す る傾向にあり,膜厚 143 µm まで吸着に関与していることが わかる. 一方,今回の実験条件においては,膜厚 16 µm 以下 のバリアへの NO2 の吸着は極めて少ないことがわかる.これ には吸着した NOx のプラズマによる脱着 ³¹⁾が関与している 可能性もある. 今後,比表面積と吸着量を調べるなどして詳 細に検討する必要がある. このバリアが有する直行細孔構造 と制御性を利用して,どの程度の深さまでプラズマが影響を 及ぼしているのか,脱着等と関連させて調べることが可能と 思われる. これはプラズマ内に設置する多孔質材料や触媒担 体構造の最適化において非常に重要である.

4. まとめ

無声放電のバリアに用いる多孔質陽極酸化アルミナの 構造が NOx処理に与える影響を調べた結果,次のことが 明らかとなった.

- (1) バリアの構造変化にともなう&の変化が放電電力とNO 除去率と深い関係にあった.
- (2) 膜厚 16-33 μm のポアーワイドニング処理したバリアを 用いた場合の放電電力は、他のバリアとは異なる特異 な変化を示した.構造が放電発生に直接的に関与して いる可能性が示唆された.
- (3) 陽極酸化アルミナによって NOx の発生を抑制できた.
- (4) 封孔処理したバリアへの NO2 吸着は極めて少ない.
- (5) 膜厚 143 µm まで NO2 吸着に関与している.
- (6) 膜厚 16 μm 以下の多孔質陽極酸化アルミナへの NO2の 吸着は極めて少ない.

陽極酸化アルミナの直行細孔と制御性を利用した実験は, 他の材料では困難な検討を可能にしプラズマ反応器の発展 への貢献が期待できる.

参考文献

- B.R. Locke, A. Ichihashi, H.H. Kim and A. Mizuno : Diesel engine exhaust treatment with a pulsed streamer corona reactor equipped with reticulated vitreous carbon electrodes. IEEE Trans. Ind. Appl., **37** (2001) 715
- T.V. Rakhimova, O.V. Braginsky, A.S. Kovalev, D.V. Lopaev, Y.A. Mankelevich, E.M. Malykhin, A.T. Rakhimov, A.N. Vasilieva, S.M. Zyryanov and M.R. Baklanov : Recombination of O and H atoms on the surface of nanoporous dielectrics. IEEE Trans. Plasma Sci., 37 (2009) 1697
- M. Okubo, T. Kuroki, S. Kawasaki, K. Yoshida and T. Yamamoto : Continuous regeneration of ceramic particulate filter in stationary diesel engine by nonthermal plasma induced ozone injection. IEEE Trans. Ind. Appl., 45 (2009) 1568
- 4) S. Ibuka, Y. Liu, M. Okada, T. Nakamura, A. Kamal, T. Murakami, H. Sehata, K. Yasuoka and S. Ishii : Optical investigation of fast pulsed discharge on surface of ceramics for environmental applications. Jpn. J. Appl. Phys., 40 (2001) 1122
- K. Hensel, S. Katsura and A. Mizuno : DC microdischarges inside porous ceramics. IEEE Trans. Plasma Sci., 33 (2005) 574
- 6) N. Harada, T. Moriya, T. Matsuyama, H. Yamamoto and S. Hosokawa : A novel design of electrodes system for gas treatment integrating ceramic filter and SPCP (surface corona discharge induced plasma chemical process) method. J. Electrostat., 65 (2007) 37
- M.S. Cha, Y.H. Song, J.O. Lee and S.J. Kim : NOx and soot reduction using dielectric barrier discharge and NH₃ selective catalytic reduction in diesel exhaust. Int. J. Plasma Environ. Sci. Technol., 1 (2007) 28
- Y. Yamagata, K. Niho, T. Jono, Y. Kawagashira and K. Muraoka : Simultaneous decomposition of diesel particulate material and NOx using dielectric barrier discharge, J. Adv. Oxid. Technol., 9 (2007) 134
- 9) 尾形 敦: 有害大気汚染物質の処理技術- 固体表面が かかわる低温プラズマ反応. 静電気学会誌, 24 (2000) 29
- O. Jessensky, F. Muller and U. Gosele : Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett., 72 (1998) 1173
- 11) 小野幸子:アノード酸化により生成する多孔質皮膜の 構造と成長機構-アルミニウムおよびマグネシウムに ついて、表面科学, 19 (1998) 790
- H. Masuda and K. Fukuda : Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 268 (1995) 1466
- H. Masuda, K. Yada and A. Osaka : Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Jpn. J. Appl. Phys., 37 (1998) L1340
- 14) H. Asoh, K. Nishio, M. Nakao, A. Yokoo, T. Tamamura and H. Masuda : Fabrication of ideally ordered anodic porous alumina with 63 nm hole periodicity using sulfuric acid. J. Vac.

Sci. Technol. B, 19 (2001) 569

- K. Nishio, K. Iwata and H. Masuda : Fabrication of nanoporous WO₃ membranes and their electrochromic properties. Electrochem. Solid-State Lett., 6 (2003) H21
- 16) F. Matsumoto, K. Nishio and H. Masuda : Flow-through-type DNA array based on ideally ordered anodic porous alumina substrate. Adv. Mater., 16 (2004) 2105
- 17) Y. Guo, M. Sakurai, H. Kameyama, I. Kamiya, A. Matsuyama and Y. Kudoh : The effect of SO₂ and H₂O on the SCR-C₃H₆ of NO over a transition metals supported mesh-type alumite catalyst. J. Chem. Eng. Jpn., **37** (2004) 895
- L. Wang, V.D. Vien, K. Suzuki, M. Sakurai and H. Kameyama : Preparation of anodised aluminium catalysts by an electrolysis supporting method for voc catalytic combustion. J. Chem. Eng. Jpn., 38 (2005) 106
- 19) T. Mizushima, K. Matsumoto, J. Sugoh, H. Ohkita and N. Kakuta : Tubular membrane-like catalyst for reactor with dielectric-barrier-discharge plasma and its performance in ammonia synthesis. Appl. Catal. A: General, 265 (2004) 53
- 20) J.H. Cho, K.W. Lee, S.J. Park and J.G. Eden : Coplanar ac discharges between cylindrical electrodes with a nanoporous alumina dielectric: Modular dielectric barrier plasma devices. IEEE Trans. Plasma Sci., 33 (2005) 378
- S.J. Park, K.S. Kim and J.G. Eden : Nanoporous alumina as a dielectric for microcavity plasma devices: Multilayer Al/A12O3 structures. Appl. Phys. Lett., 86 (2005) 221501
- 22) Y. Iwasaki, J. Liu, J. Zhang, T. Kitajima, M. Sakurai and H. Kameyama : Hydrogen production from ethanol using a plasma reactor with an alumite catalyst electrode. J. Chem. Eng. Jpn., **39** (2005) 216
- 23) 寺嶋和夫, 苫居高明, 金載浩:マイクロ, ナノ領域での プラズマの生成法. 静電気学会誌, 29 (2005) 150
- 24) K. Shimizu, M. Kanamori and M. Blajan : Application of atmospheric microplasma for indoor air treatment. Int. J. Plasma Environ. Sci. Technol., 4 (2010) 45
- T. Kawasaki : Manufacturing of anodic porous alumina for barriers in a dielectric barrier discharge reactor, J. Electrostat., 66 (2008) 395
- 26) T. Kawasaki, Y. Yusuke and T. Yamauchi : Multilayer dielectric barrier discharge using only anodic porous alumina as barriers in atmospheric-pressure air. IEEE Trans. Plasma Sci., 36 (2008) 1324
- T. Kawasaki : Basic characteristics of dielectric barrier discharge reactor using anodic porous alumina for NOx removal. J. Surface Finish. Soc. Jpn., 60 (2009) 174
- A. Mizuno and H. Ito : Basic performance of an electrostatically augmented filter consisting of a packed ferroelectric pellet layer. J. Electrostat., 25 (1990) 97
- 29) 尾形 敦, 宮前景子, 水野光一, 櫛山 暁, 手塚 還: ベンゼンのプラズマ分解反応に与えるリアクタの影響. 静電気学会誌, 24 (2000) 108
- T. Yamamoto, M. Okubo, K. Hayakawa and K. Kitaura : Towards ideal NOx control technology using a plasma - chemical hybrid process. IEEE Trans. Ind. Appl., 37 (2001)1492
- M. Okubo, G. Tanioka, T. Kuroki and T. Yamamoto : NO concentration using adsorption and nonthermal plasma desorption. IEEE Trans. Ind. Appl., 38 (2002)1196