J. Inst. Electrostat. Jpn

論 文

Construction and Characteristics of Submerged Style Pulse Discharge System in Bubble Water

Takayuki OHSHIMA,*^{,1} Takanori TANINO* and Yoshinori NARUKE*

(Received September 14, 2010; Accepted May 16, 2011)

A novel pulse discharge system for water treatment was constructed, which can be easily submerged in water. It consists of a stainless screw bar used as the high voltage electrode, a stainless spiral wire used as the earth electrode, and an air disperser placed under the electrodes. High voltage pulse (20 kVp, 333 Hz) was applied to the high voltage electrode, and generated discharge plasma was observed by high-speed video camera system. The frequency of discharge plasma was depended on the gas flow rate. The maximum frequency of discharge plasma generation was 200 per second, which was achieved when the air flow rate was 6 L/min or more. The frequency of discharge was drastically decreased with increase of solution conductivity, and no discharge plasma was observed when the conductivity was 1,200 μ S/cm. The decomposition of indigocarmine and linear alkylbenzene sulfonate (LAS) was also demonstrated with this novel discharge plasma reactor. As the maximum decomposition rate was achieved when air flow rate was 4 L/min, the frequency of discharge was about 150 /s, it was suggested that the diffusion of contaminant molecule to the plasma region is the rate-limiting of decomposition reaction in our system.

1. はじめに

近年,高度水処理を目的とした水中放電プラズマが注目 されている.初期の水中放電プラズマは針対平板電極形状 リアクターであったが,様々な研究者により多様なリアク ターが放電プラズマ処理効率の向上のために研究室内で試 作されている¹⁾.

Clements らは水中放電に関する最初の報告をしたグルー プであり、針対平板電極形状を用い、1 J/pulse 程度の入力 エネルギーで発生する水中プラズマ(パルスストリーマコ ロナ、またはコロナ様放電)の化学的物理的特徴を報告し ている²⁾. 放電の発生に伴い水素ラジカルが生成している こと、酸素または空気を導入したときにはオゾンが発生し ていることを明らかにした.またストリーマ放電の長さは 溶液の導電率の影響を受けることも報告している. Joshi らは Clements らと同様な針対平板電極を用いた水中プラ ズマ形成に伴う水素ラジカルと OH ラジカルの測定を行っ ている³⁾. これらの先進的な研究の後に OH ラジカルなどの 活性種の測定方法が改良されるのに伴い、水中放電のメカ ニズムが明らかになってきている. Sato ら⁴⁶⁾や Sunka ら⁷⁾ は発光分光測定と化学的測定法により水中放電プラズマの 発生に伴う OH ラジカルや他のラジカル種の発生を証明し ている.

このように水中プラズマについては潜在的な需要があり, 基礎的なデータも整いつつある状況であるが、大気中(ガ ス相)における放電プラズマの利用技術に比べて,水中(液 相)での放電プラズマを用いた技術はほとんど報告されて いない.理由の一つは絶縁破壊電圧の違いである.空気中 の絶縁破壊電圧は約30 kV/cm であるが,純水の絶縁破壊電 圧は1 MV/cm を超えるといわれている. このような電界強 度を産業レベルで調整するのは容易ではない. 実験室レベ ルでは針対平板型のような不均一電界で局所的に発生させ ることができるが、作用範囲は極めて限られたものになる. そこで水中で放電プラズマを作用させるために検討されて いるのが気液混合相での利用である.バブル中で発生し た放電プラズマは、一部が水中に伸長すると考えられて いる8). また逆に水をミスト化し、気中放電プラズマに曝 すことで殺菌を試みた例もある⁹. 筆者らもマイクロバブ ルを利用した水中放電プラズマを使用したタンパク質10)や 界面活性剤¹¹⁾の分解を報告している.ただし装置や放電処 理槽が複雑であり、連続運転するために多大の労力を必要 とした.

キーワード:パルス電圧,気液混合,放電プラズマ,インディゴカルミン,界面活性剤

^{*} 群馬大学大学院工学研究科(376-8515 群馬県桐生市天神町 1-5-1)

¹ tohshima@cee.gunma-u.ac.jp

- 図 1 投げ込み式放電ユニットの概略図(A)と水中 にセットした写真(B)
- Fig. 1 Schematics of submerged style discharge plasma unit (A), and photograph of experimental setup (B).

そこで本研究では装置が簡便でメンテナンスしやすく, また試料だまりに投げ込んで使用できる装置を開発し,この装置の放電特性と実用性について調査研究を行った.

2. 実験方法・手順

2.1 高電圧パルス発生装置および反応器

高電圧パルス発生装置は前報¹¹⁾と同様の装置を用い、ピ ーク電圧 20 kV, 周波数は333 Hz で操作した. 図1 (A) に 本研究で作製した投げ込み式水中プラズマ反応器の概略図 を示す. 高電圧電極に3 mm ♦ のステンレスねじ棒を用い, アース電極にらせん状ステンレスワイヤー(1 mm)を用 いた. 高電圧電極棒がステンレスワイヤーアース電極の中 心を通るよう、アクリル角棒 5×5 mm を骨格として電極 を固定した. 電極間距離は6mm, 放電区間となるらせん部 分の高さは80mm とし、放電区間の外に出ている高電圧電 極棒の部分はシリコンチューブで覆うことで絶縁した.水 中放電を発生させるために電極の真下30mm離れた位置に, 市販のエアーストーンを配置し, 放電区間をバブルが通り 抜けていくようにした. 以上が投げ込み式放電ユニットで これを水中に沈めることで水中放電を発生させることがで きる. エアーストーンから発生する気泡径は非常に分布が 広い. エアーストーン付近では平均 5 mm 程度であるが, 上昇とともに合一が確認された。また放電発生部位では分 散も認められ,挙動は非常に複雑であった.本研究では観察 しやすいよう100 mm \$×300 mm のアクリル円筒の容器に 2 L の試料水を入れ,投げ込み式放電ユニットを浸した状 態で実験を行った(図1(B)).バブルを発生させるための

ガスにはコンプレッサーエアーを使用し,最大流量は7 L/minとした.

2.2 試料水の調整

水中放電の観察には蒸留水を用いた. 導電率を変化させ る実験では蒸留水に NaCl (ナカライテスク)を溶解して使 用した. 導電率は 200-1,400 μS/cm で調整した.

また本研究のモデル有機物として染料の一種であるイン ジゴカルミン,および直鎖アルキルベンゼンスルホン酸ナ トリウム (LAS)を用い,それぞれの分解を検討した.イ ンジゴカルミン (東京化成工業)は蒸留水に溶解し10 ppm として使用した.測定は分光光度計 (Shimadzu, UV-1200) により,610 nm における吸光度の変化で評価した.また家 庭用,工業用の洗剤として世界で最も一般的に使用されて いる LAS (和光純薬工業)も同様に蒸留水に溶解し,50 ppm とした溶液を試料とした.LAS 濃度は前報¹¹⁾にしたがい, 高速液体クロマトグラフ (島津製作所社製,LC6A,UV-Vis Spectroscopy)で測定した.測定は3回以上行い,平均値を 実験値とした.

2.3 放電の観察方法

本研究の放電発生頻度,および放電発生部位の観察には 高速度カメラ(株式会社ナックイメージテクノロジー, HOT SHOT 1280)を用いた.撮影条件はフレームレートを 毎秒 1,000 コマで放電を撮影した.撮影した画像を PC 上で 1 コマずつコマ送りし,放電発生部位と回数を確認した. 測定は 5 回以上行い,平均値を実験値とした.

3. 実験結果および考察

3.1 投げ込み式放電ユニットの放電特性

放電を発生させるために流入するエアーの流量を変化さ せることで,放電の頻度に違いが見られ,エアー流量が大 きくなるほど放電が激しくなってゆくことが視覚的に確認 された.そこで放電頻度はエアー流量にどのように依存す るかを確かめるために高速度カメラを用いて放電の頻度と 放電が発生している位置を観察した.試料水は蒸留水であ る.

図 2(A)は電極の領域わけを示したものである.電極を等 間隔に四つの領域にわけ,水面に近い方から a, b, c, d とした.撮影した画像を PC 上で1コマずつコマ送りし,4 つの領域でそれぞれ1秒間に放電が発生する回数(放電頻 度)を測定した.図2(B)は実際のビデオ撮影の一例である.

表1は蒸留水中の各領域における1秒間の放電回数を流入エアー流量別に示したものである.右に示した without water とは,電極を水中に浸さずに完全な気中で放電を発生させた場合の結果であり,四つの領域の合計の放電回数は330回であった.パルス周波数は333 Hz でありガス中では

図 2 投げ込み式放電ユニットの領域わけ(A)と高 速度ビデオカメラの撮影例(B)

- Fig. 2 Region of the submerged style discharge unit (A) and photograph example of the high-speed video camera (B).
- 表 1 エアー流量を変えたときの各領域における放電頻 (平均)

 Table 1
 Average discharge frequency in each region with various air flow rate.

	Air flow rate (L/min)			Without
Area (-)	2	4	6	water
а	6	9	14	62
b	14	19	28	90
с	15	40	52	100
d	25	85	103	78
Total	55	153	197	330

ほぼ周波数に合った放電が観測されているため、水中で放 電を発生させたときの実験結果は信頼性があると考えられ る.水中での観測結果を比較すると、電極領域 a が最も放 電頻度が低く、a から d へとバブル発生部位に近づくにし たがって放電頻度は高くなっている.これは、バブルが水 面に向かって上昇していくのにしたがって拡散するため、

らせん下部の方がバブルに接触しやすいためだと考えられ る.またエアー流量を増やすと放電頻度が高くなった.エ アー流量が大きい方が径の大きなバブルが発生して電極間 を通り抜けていくため放電が発生しやすくなり,放電頻度 が高くなると考えられる.

また図3は四つの領域を合計した1秒間の放電回数をエ アー流量1L/minごとに7L/minまで測定しまとめたもので ある. 放電頻度は6L/minまでは上昇しておよそ200回/s に達するが,7L/minにしても放電頻度はこれ以上上昇しな かった. この結果から放電頻度の上限は200回/s程度であ ると思われる. したがって放電プラズマを発生するための 周波数としては200Hzが上限であると考えられる.

これまでの実験は全て蒸留水(導電率は 10 μS/cm)中で 行った.しかし,環境中に存在する水には様々な電解質が 含有しているため本システムの導電率の影響を検討した. 導電率はそれぞれ 200, 400, 600, 800, 1,000, 1,200 μS/cm の条件で行った. 1,200 μS/cm を超える導電率の場合,安定

図 3 エアー流量の放電頻度に与える影響 Fig. 3 Effect of air flow rate on the discharge frequency.

frequency.

した放電は確認されなかった.図4は放電頻度をエアー流 量1L/minごとに7L/minまで測定し,導電率別にまとめた ものである.導電率が上昇するに従い,放電頻度は低くな り,放電が発生する最低限のエアー流量は大きくなった. このことから,本システムでの放電は導電率が大きな因子 になっていることが確認された.

エアー流量と導電率による放電頻度が明らかになったこ とから、それら二つのパラメータを用いた放電頻度の数式 化を検討した.式は、シグモイド型曲線の式を元にフィッ ティングを行い、放電頻度を P として以下の式を得た.

$$P = \frac{A(1 - C/E)}{1 + e^{1.2(3 - F)}} \tag{1}$$

ここで、A を推定される最大の放電頻度 = 200 回/s, E を放電が発生しなくなる最小の導電率 = 1,250 μ S/cm とし てF = エアー流量 (L/min), C = 試料の導電率 (μ S/cm)の 値を代入することでおおよそ実験値と近似する曲線が得ら

- 図 5 各条件における放電頻度と近似式(1)による近 (U結果)
- Fig. 5 Discharge frequency in various experimental conditions and approximation with experimental equation (1).

れた.図5は実験値と近似式との比較を行ったものである. 数式化により,ある導電率の試料に対してどの程度のエア 一流量でどの程度の放電頻度が得られるか,計算が可能と なった.

3.2 水中放電プラズマによるインジゴカルミンの脱色 および LAS の分解

本研究で検討している投げ込み式放電ユニットが水中の 有機物の分解に有効であるかを確認するため、染料インジ ゴカルミンの脱色および、難分解性である LAS の分解を試 みた.また流入するエアーの流量を変化させると放電頻度 に差が生じる.そこで、インジゴカルミン脱色および LAS 分解の放電頻度への依存性を確認するために、エアー流量 を変化させることにより放電頻度を変えて実験を行い効果 を比較した.エアー流量は2,4,6 L/min の条件下で実験 を行った.10 ppm インジゴカルミンの脱色実験では吸光度 (OD₆₁₀)の相対変化で評価した.また LAS の残存率は前 報¹¹⁾に従い、ピークエリア面積の相対変化で評価した.

図6はインジゴカルミン脱色結果,図7はLAS残存率変 化を示している.結果を比較すると、インジゴカルミン、 LASともにエアー流量が2 L/minから4 L/minのときは分 解効率が向上したが、6 L/minにエアー流量を増やしても分 解効率の向上は認められなかった.それぞれの試料中での 放電頻度は表1の蒸留水中の結果と同様に55 回/s、153 回

図 6 各エアー流量におけるインジゴカルミンの脱色 率の経時変化

Fig. 6 Decoloration of indigocarmine with various air flow rates.

図 7 各エアー流量における LAS の残存率の経時変化 Fig. 7 Residual LAS concentration with various air flow rates.

/s, および 197 回/s 程度と上昇しているにも関わらず分解 効率が向上しない(最適な条件はエアー流量4L/min, 放電 頻度 153 回/s となる)のは, インジゴカルミンや LAS が放 電プラズマ反応場に拡散するのが律速となっている可能性 が示唆された.

3.3 投げ込み式放電ユニットによる LAS 分解メカニズム

本研究で作製した投げ込み式放電ユニットはインジゴカ ルミンや LAS の分解に有効な方法であることが確認され たが,この分解効率は放電頻度と比例関係とはなっていな かった.そこで LAS の分解メカニズムについて検討した.

水中で放電が発生した場合,OH ラジカルが発生するこ とは広く知られている.このOH ラジカルのLAS 分解への

図 8 ラジカルスカベンジャー (DMSO) の有無によ る LAS 残存率の変化

Fig. 8 Residual LAS concentration with and without radical scavenger (DMSO).

図 9 オゾンガスによる LAS 残存率の変化 Fig. 9 Residual LAS concentration with ozone gas.

関与がどの程度なのかを検討した.実験条件は LAS 初期濃度を50 ppm, ラジカルスカベンジャーとしてジメチルスルホキシド(DMSO:和光純薬)を濃度250 ppm となるよう加え,放電処理を行った.DMSOは,水溶液系でOH ラジカルを効率良くスカベンジできることはよく知られており,放射線生物学の分野でも古くから利用されている¹²⁾.またラジカルスカベンジャー濃度は試料濃度の5倍が適切であることが明らかになっている¹³⁾.流入エアー流量 2 L/min,処理時間 30 min で行った.図8は DMSO の有無による分解効率の違いを示している.DMSO を加えて処理を行った場合,LASの残存率は30 min処理で35%程度であった.DMSOを加えていない場合に比べておよそ5%分解が抑制された.したがってLAS 分解における OH ラジカルの関与はそれほ

ど大きくはないと考えられる.

また放電で発生するオゾンによる LAS の分解も試みた. 使用したオゾン発生装置は増田研究所製オゾン発生装置 (OZS-HC-70-AC)で、これまでエアーコンプレッサに接 続していたエアーストーンをオゾン発生装置に接続し、濃 度 50 ppm、2 Lの LAS 溶液中にオゾンをバブリングした. 放電によって水中に発生するオゾンの量は条件によって大 きく変動するが、Zhang らはおよそ 0.01 mmol/Lのオゾン ガスが発生していたことを報告している¹⁴⁾. 今回はその 30 倍である、0.3 mmol/Lのオゾンを送り込み、0 から 30 min 処理した. 図 9 はオゾン処理の結果を示したものであるが、 オゾンによる LAS 分解は認められなかった.よって、本シ ステムでは発生するオゾンは LAS の分解に関与しないと 考えられる.

また超音波, UV の LAS 分解への関与も検討したが, こ れらの処理単独では LAS の分解はほとんど確認されなか った.したがって本システムによる LAS 分解には電子衝突 などを含む放電プラズマの直接作用が必要であると推定さ れる.つまり放電プラズマそのものへの LAS 分子の接触が 必要である. 3.2 節で LAS 分子のプラズマ場への拡散が律 速になっている可能性を指摘しているが, ラジカルやオゾ ン, UV など放電により二次的に発生する分子や物理的作 用があまり LAS 分解に関与していないという実験結果も この推論を支持していると考えられる.

本研究のシステムでは放電は基本的にはバブル内で発生 していると考えられる.前述のように放電によるラジカル 種のLAS分解への寄与はわずかで、オゾン、UVや衝撃波 単独ではほとんど影響しないことがわかっている(図8,9). したがって放電プラズマに水中のLAS分子が直接接触す ることが必要と考えられる.本研究ではエアー流量を 6 L/min 以上にすることで放電頻度は 200 回/s まであげるこ とは可能であるが、LAS分解効率はエアー流量を 4 L/min

(放電頻度はおよそ 150 回/s) 以上にしても向上しなかった.したがって水中での LAS 分子の気液界面への拡散が律速となっていると推定され,本システムによる LAS のような水中分子の分解には 150 回/s 程度の放電頻度が最適と考えられる.

本研究では水中での放電プラズマ発生を目的とした新規 投げ込み式放電ユニットを作製し、この放電発生特性、お よびインジコカルミンと LAS の分解を実証した. 今後エネ ルギー効率を考慮すれば医療廃棄溶液や油含有溶液など、 既存の水処理施設にそのまま投入することが困難な溶液の 第一次処理が可能と考えられる.

4. 結言

放電プラズマを用いた水処理を目的とした投げ込み式放 電ユニットを作製し,以下の結果を得た.

- 投げ込み式放電ユニットによる放電プラズマの発生 はエアー流量に依存する.最大放電頻度はエアー流 量が 6 L/min 以上で 200 回/s であった.
- (2) 投げ込み式放電ユニットによる放電プラズマの発生 は溶液の導電率に大きく依存した.またこの放電頻 度を予測する近似式を提案した.
- (3) インジゴカルミンの脱色および LAS の分解効率は
 エアー流量 4 L/min 以上(放電頻度 150 回/s 以上)
 で最大となった.
- (4) LAS などの分解対象分子の放電プラズマ場への拡 散を考慮すると水中での放電頻度は150回/s程度で 制御するのがよいと推定される.

参考文献

- B.R. Locke, M. Sato, P. Sunka, M.R. Hoffmann and J.-S. Chang: Ind. Eng. Chem. Res., 45 (2006) 882
- J.S. Clements, M. Sato and R.H. Davis: IEEE Trans. Ind. Appl., IA-23 (1987) 224

- A.A. Joshi, B.R. Locke, P. Arce and W.C. Finney: J. Haz. Mater., 41 (1995) 3
- M. Sato, T. Ohgiyama and J.S. Clements: IEEE Trans. Ind. Appl., 32 (1996) 106
- B. Sun, M. Sato and J.S. Clements: J. Electrostat., 39 (1997) 189
- B. Sun, M. Sato, A. Harano and J.S. Clements: J. Electrostat., 43 (1998) 115
- P. Sunka, V. Babicky, M. Clupek, P. Lukes, M. Simek, J. Schmidt and M. Cernak: Plasma Sources Sci. Technol., 8 (1999) 258
- 安岡康一,前原常弘,勝木淳,浪平隆男,金子俊郎, 畠山力三: J. Plasma Fusion Res., 84 (2008) 666
- 斎藤 司,半田泰輝,南谷靖史:電気学会論文誌A, 128 (2008) 317
- 大嶋孝之, 堀野太希, 柴田義幸, 長谷川優子, 佐藤正 之:静電気学会誌, 33 (2009) 14
- 谷野孝徳、中村ふみ、大嶋孝之:静電気学会誌,34 (2010)31
- T. Miyazaki, Y. Hayakawa and K. Suzuki: Radiat. Res., 124, (1990) 66
- 13) K. Gai: J. Electrostat., 67 (2009) 554
- 14) Y. Zhang, M. Zhou and L. Lei: Chem. Eng. J., 132 (2007) 325