

インピーダンス計測法による損傷大腸菌の誘電特性解析 円城寺隆治*,**¹,尼子恵里**,内田 諭**, 杤久保文嘉*

円城寺隆治*,**,1,尼子恵里**,内田諭**,杤久保文嘉** (2006年9月15日受付;2006年12月6日受理)

Analysis of Dielectric Characteristics for Injured Eschericia coli Using Impedance Measurement Method

Takaharu ENJOJI****, Eri AMAKO**, Satoshi UCHIDA** and Fumiyoshi TOCHIKUBO**

(Received September 15, 2006 ; Accepted December 6, 2006)

In the present work we investigated dielectric characteristics of injured *Eschericia coli* (*E. coli*) which was given experimentally a heat-treatment stress using an interdigitated microelectrode array and the dielectrophoretic impedance measurement (DEPIM) method. Conductance change (ΔG) measurements by DEPIM method were performed under two different frequency conditions (100 kHz and 1.0 MHz). For stress which stems from various heat-treatments, each ΔG of *E. coli* differed widely in 100 kHz frequency tests. However, each ΔG was almost equivalent in 1.0 MHz frequency tests except under high temperature stress condition (353.15 K). It is demonstrated that conductivity of *E. coli* would be changed by heat-treatments stress compare with permittivity. These results show that DEPIM method with the interdigitated microelectrode array could be a practicable technique for monitoring the metabolism activity of microorganism in real-time.

1. はじめに

酒造業における醸造過程の醗酵制御・管理は,製品の品質 を保つために重要な要素である.このため最近では, 醗酵に 関与する酵母菌や乳酸菌の状態を,醸造工程内でオンライン かつリアルタイム計測する試みがなされている.酵母をはじ めとする微生物が,絶縁体である細胞膜の中に導電性の細胞 質が含まれている誘電体であることに着眼し,酵母懸濁液の 醗酵過程を常時モニタリングできる誘電計測プローブの研究 開発成果が報告されている^{1,2)}.しかしながらこれらの計測 法は,酵母を含んだ懸濁液自体の誘電率を評価する手法であ り,分析原理上,大量の試料が必要(数百 mL オーダー)と なる.また現時点で,リアルタイム制御のシステム構築には 至っていない.一方,半導体製造技術などを応用した微細加 工によるマイクロセルを用いた誘電泳動研究も盛んであり, 誘電泳動力による生体分子ハンドリング³または誘電泳動イ

キーワード: 誘電泳動, インピーダンス計測法, 損傷大腸菌, マイクロセル, 代謝活性

¹ enjoji@entest.co.jp

ンピーダンス計測(Dielectrophoretic Impedance Measurement, DEPIM)による微生物モニタリング法について種々の報告が なされている⁴⁶⁾.これらの特徴として,対象となる微生物な どを微細な電極セル上に捕集することにより,マイクロスケ ールでの定量・定性測定が可能となる点が挙げられる.さら に誘電泳動力のみでなく,抗原抗体反応原理を併用し,電極 セル間で標的菌のみを選択的に保持させる方法⁷⁾や,電極を 立体的に組み合わせた簡易型フローサイトメトリーの開発⁸⁾ など,その内容は多岐にわたる.その他にも,生死細胞の分 離法としての誘電泳動用電極セルも研究されている⁹⁻¹²⁾.

ところで我々は、現在までに幾つかの電極パターンを有す るマイクロセルを作製し、DEPIM 法を用いて微生物に対する 濃縮特性を評価している¹³⁾.これらの実験結果から、我々は、 先に述べた酵母の醗酵状態に代表される微生物の代謝活性を 評価する手段として、マイクロスケール DEPIM 法による検 査法が、極めて有効であると考えている.

これらを踏まえ、本研究では、今までに得られたマイクロ セルによる微生物濃縮技術に加え、微生物の代謝活性状態を リアルタイムで計測できる DEPIM 法を確立することを目的 としている.本報では、大腸菌 (*Eschericia coli*) に加温処理 を施すことによって、実験的に菌状態に変化を与え、その状 態の相違をマイクロセルによる DEPIM 法で評価した結果を 示す.

^{*} エンテストジャパン(株)(124-0023 東京都 葛飾区 東新 小岩 7-13-8)

Entest Japan, Inc., 7-13-8 Higashi-Shinkoiwa, Katsushika-ku, Tokyo, 124-0023, Japan

^{**} 首都大学東京 理工学研究科(192-0397 東京都 八王子市 南大沢 1-1)

Tokyo Metropolitan Univ., 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan

加温処理ストレスは、微生物の細胞質膜、細胞質のタンパ ク質、酵素を損傷及び失活させることが知られている^{14,15)}. これらのことは、微生物の代謝活性に影響を与えることを示 唆しており、今回の実験で得られたコンダクタンス値から菌 の代謝活性状態の相違が間接的に確認されたと推測される.

これらの研究成果は、従来法では見られないような、省電力、低電圧、迅速、高性能などの特徴を有する小型簡易管理 システムを構築することが充分可能であることを示唆している.

2. 誘電泳動理論

誘電泳動法とは,電界勾配と粒子との分極を利用し,液体 中の粒子を操作する手法である^{16,17)}.

媒質の誘電率 ε_1 , 導電率 σ_1 , 粒子の誘電率 ε_2 , 導電率 σ_2 として, それぞれの複素誘電率を

$$\hat{\varepsilon}_1 = \varepsilon_1 + \frac{\sigma_1}{j\omega}$$
, $\hat{\varepsilon}_2 = \varepsilon_2 + \frac{\sigma_2}{j\omega}$ (1)

とおくと,不均一電界での誘電泳動力 *F*_{dep}は,次式(2) で与えられる.

$$F_{\rm den} = 2\pi\varepsilon_1 \operatorname{Re}[\hat{K}(\omega)]R^3 \nabla E^2 \tag{2}$$

ただし、R は粒子半径、E は電界である. ここで $\hat{K}(\omega)$ は、

$$\hat{K}(\omega) = \frac{\hat{\varepsilon}_2 - \hat{\varepsilon}_1}{\hat{\varepsilon}_2 + 2\hat{\varepsilon}_1}$$
$$= \frac{\varepsilon_2 - \varepsilon_1 - j(\sigma_2 - \sigma_1)/\omega}{\varepsilon_2 + 2\varepsilon_1 - j(\sigma_2 + 2\sigma_1)/\omega}$$
(3)

で与えられる、交流電界での Clausius-Mossotti 関数である.

上式より明らかなように,誘電泳動力は,電界分布,電界 周波数,粒子及び懸濁液の複素誘電率,粒子体積に強い依存 性を示す.誘電泳動現象により,細菌等を濃縮し,それら濃 縮した細菌群を電気インピーダンスとして検出する方法を, 一般に誘電泳動インピーダンス計測(DEPIM)法と呼ぶ¹⁸⁾.

3. 実験方法

3.1 誘電泳動電極

電泳動電極を用いたマイクロセルを Fig. 1 に示す.マイク ロセルは,誘電泳動電極セル,流路,電極セルホルダーから なる.電極セルにおける微生物捕集部電極パターンを Fig. 2 に示す. 一本の電極は 5.0 mm(L)×0.1 mm(W)である. 10 本 の電極を等間隔に並列配置しており,同形の電極 10 本を対面 から交互に組み合わせる事によって,櫛形電極群を配置した. 各電極の間隔は, 10 μ m である.また,流路の材質として, 軟性ポリジメチルシロキサン (PDMS)を採用した. PDMS には,液体試料が電極セル表面に接するように,55 mm(L)× 3 mm(W)×0.5 mm(T)の流路を形成した. 各配管は, 1.0 mm× 2.0 mm のテフロンチューブを使用した. チューブコネクター には, テフロン製フランジレスナットを採用した.

3.2 電極セル作製方法

 $60 \text{ mm}(L) \times 20 \text{ mm}(W) \times 1.0 \text{ mm}(T)の石英ガラスに Cr を 0.1$ $<math>\mu$ m 全面皮膜したのち、Cr 成膜基板にフォトレジストを塗布 した. 櫛形電極形に成形されたフォトマスクを使用しての露 光・現像処理を行い、硝酸第二セリウムアンモニウムによる Cr エッチングを実施した.最終的に 99.9 %アセトン溶液でフ オトレジストを剥離することによって櫛形電極のパターニン グを行った.電極表面上には絶縁層として、SiO₂を 0.3 μ m 成膜した.加えて、電極表面における微生物、細胞などの非 特異的反応(吸着)を抑制する効果を有する界面親和剤¹⁹ (主成分:りん脂質)を電極表面に吸着させた.この吸着条 件は実験的に確立した.

device

3.3 実験菌種及び調整方法

実験菌種は, *Eschericia coli* K1 株 ATCC 11775 (以下, *E. coli*) を用いた. *E. coli* は、大きさ 1–1.5×2–6 μ m の通性嫌気性 グラム陰性桿菌である²⁰⁾. まず、*E.coli* K1 標準菌株 (Culti-Loops, Remel)を、標準寒天培地(日本製薬)上に塗 布し、309.15 K (36 °C)、24 h の条件で増菌培養した. 培養 後、滅菌済み0.1 M D-マンニトール (DM) 溶液1 mL に、 *E. coli* を適量混和させた後、遠心分離(6000 rpm×10 min)を 行い、分離沈殿した *E. coli* を同 DM 溶液で2回洗浄した. 洗 浄済み *E. coli* を, あらたな DM 溶液に混和したものを懸濁原 液とし、混釈平板培養法によって懸濁原液の菌濃度を計測し た. 懸濁原液の *E. coli* 濃度は約 1.1×10⁸ CFU/mL であった. このとき使用した培地及び培養条件は上記と同様である. 実 験期間中、懸濁原液は菌の増殖、減少等を制御するため、 277.15 K (4 °C) で保管した.

3.4 菌の加温処理

本実験では、代謝活性能力の異なる E. coli を作製する手段 として、熱処理によるストレス負荷を用いた²¹⁾.

277.15 K で保管されていた懸濁原液 1 mL を,滅菌済みス クリューキャップチューブに分取した後,水温を 288.15 K (15 °C),300.15 K (27 °C),309.15 K (36 °C),320.15 K (47 °C) 及び 353.15 K (80 °C) に設定したウォーターバス 内でそれぞれ 15 min 加温した.同時に,低温保管による *E. coli* の代謝活性変化を確認するため,277.15 K (4 °C) で保管し たサンプルについても実験を行った.また,加温処理による 活性 *E. coli* 変化量を調査するため,DM 溶液で 10⁶ – 10⁷ 倍希 釈した各処理サンプル 1 mL を,滅菌済みペトリ皿 2 枚ずつ に分注し,混釈平板培養法によって生育するコロニー数を計 測した.培地及び培養条件は,上記 3.3 と同様とした.なお, 誘電泳動実験は行っていないが,追加で 333.15 K (60 °C) の 温度でも加温処理を実施し,コロニー生育数を計測した.

3.5 加温処理による誘電泳動特性の計測

加温処理を施した各サンプルに対し誘電泳動実験を行い, どのような挙動特性を有するか調査した.誘電泳動実験系概 略を Fig. 3 に示す.電極セルへの電圧印加にはファンクショ ンジェネレータ(AFG3022, Tektronix)を使用し,その印加 電圧をオシロスコープ(TDS3052B, Tektronix)で連続測定し た.実験では,正弦波電圧設定値の電圧幅を10 Vp-pに固定 し,周波数を100 kHz 及び1.0 MHz とした.電極セルへの送 液には送液ポンプ(PSM050DA, Advantec)を使用した.流 速は 60 mL/h とした.電極セルにおける微生物捕集状況は, 光学顕微鏡(LV100, Nikon)を用いてリアルタイムで観察し, それらの様子は,画像・映像処理装置を用いて適時記録した.

Fig. 3 Schematic diagram of DEPIM method

また、回路中に抵抗器(430 Ω)を設置し、そこにかかる 電圧変動をロックインアンプ(Model-SR844, SRS)で連続測 定することによって、間接的に電極間のコンダクタンスを算 出した. ロックインアンプからの出力は、データロガー (EZ5840, NF)を介して、データ処理装置へ連続的に取り 込んだ. データの採取手順として、送液ポンプ稼動と同時に 印加を開始し、90 sec後に加温処理した *E. coli* サンプルを DM 溶液入りサンプルビンに注入した.最終 *E. coli* 懸濁液濃度は、約1.1 ×10⁷ CFU/mL となるようにした.加温処理から誘電泳 動実験実施までの時間は 3 min とした.印加開始 900 sec に達 した時点で印加を停止した.

4. 実験結果及び考察

4.1 加温処理による菌の生育特性

加温処理温度と *E. coli* コロニー生育数との関係を Fig. 4 に 示す. ここでは、277.15 K 処理時のコロニー数(Ct277.15) を基準とし、各処理温度によるコロニー数を相対値 (C/Ct277.15)で示した.加温処理温度が277.15 K-309.15 K の範囲では、コロニー生育数に大きな差異は見られないが、 320.15 K (47 ℃)での発育数は277.15 K 時と比較してほぼ半 減し、それ以上の温度になると、*E. coli* は寒天培地上に生育 しなかった.一般に、微生物は加熱によって強いストレス負 荷を受けると、細胞の一部が毀損し、菌はいわゆる損傷菌と 呼ばれる状態となる.損傷菌は、加熱だけでなく冷蔵、冷凍、 コールドショックなどによるストレス要因によっても発生す ることが知られており²²⁾、さらに、単純に処理温度だけでは なく、今回の実験のように、277.15 K (4 ℃)で保管したサ ンプルをウォーターバスで急速に加温することによっても、

temperature.

菌の状態に多大な影響を及ぼすことが報告されている²³⁾.

これらのことから,比較的低温領域においても,条件によって損傷菌が形成されるものと推測される.これらの菌は, 損傷の程度によって,今回用いた標準寒天培地などの非選択 培地上において回復し,生育できることが報告されている²²⁾. すなわち,今回 333.15 K (60 ℃)以上の温度で処理された *E. coli* が充分に発育出来なかったのは,細胞質膜等のタンパ ク質の熱変性,或いは細胞表面全体の著しい損傷によって代 謝活性機能を失ったため,回復することが出来なかったもの と推測される.

4.2 加温処理による誘電泳動特性の計測

印加時間と印加開始時からのコンダクタンス変化量(ΔG) との関係例を Fig. 5 に示す.印加開始[1]から 90 sec 後に *E .coli* サンプルを注入したところ[2],約 100 sec 付近から電 極間に *E. coli* が捕捉され始めるのと同時にコンダクタンス の上昇が見られ[3], Fig. 6 (b)に示すとおり電極間にパールチ ェーンが形成された.パールチェーンは,流れ方向にスライ ドし,最終的には電極下流部に集結した.印加停止[4]と同時 に捕捉されていた *E. coli* が瞬時に放出された.また,界面親 和剤の効果により,電極間に残存する *E. coli* は極めて少なく, Fig. 6 (c)のとおり電極への付着も殆ど確認されなかった.

Fig. 7 に,周波数 100 kHz 時における加温処理温度と ΔG との関係を示す.ここでは,印加開始 300,600 及び 900 sec 時点の ΔG をプロットした.この図から,処理温度の上昇に 伴い最終的な ΔG は高くなり,300.15 K (27 °C)付近で最も 高い値を示すことが分かる.ただしそれ以降,加温処理温度 の上昇と共に ΔG は低下し,完全に失活したと思われる 353.15 K (80 °C)では,300 sec 時の ΔG は高いものの,

図 6 測定中における電極間の様子 (a) 0 sec, (b) 150 sec, (c) 900 sec Fig. 6 Photographs of the interdigitated microelectrode array during DEPIM test. (a) 0 sec, (b) 150 sec, (c) 900 sec

図7 加温処理温度とΔGの関係(周波数:100 kHz, 印加電圧:10 Vp-p)

最終的に大きな ΔG の上昇は見られなかった. ΔG の変動の 差異は、測定時間内における E. coli 捕集量及びパールチェー ンの形成状況が、周波数及び加温処理条件によって変化した ことに起因するものと考えられる.また、電極間のほか、電 極エッジ部に E. coli が捕捉される現象が確認された. これは エッジ部にも強力なFdepが作用したためと考えられる.また, 277.15 K-309.15 Kの範囲におけるΔG変動傾向とFig. 4の E. coli コロニー生育数を比較した場合、特に明確な相関は見 られないことが分かる. 一方, Fig. 8 に示したとおり, 周波 数1.0 MHz 時の場合, 277.15 K-320.15 K の範囲において ΔGに大きな変動は見られなかった. また, 100 kHz 時とは 異なり, 353.15 K でのΔG 上昇は全く見られなかった.この 場合,測定中,電極間に E. coli は殆ど保持されず,パールチ ェーンの形成も見られなかったことが確認された. 通常, 生 細胞と死細胞では誘電泳動特性が大きく異なることが知られ ており、この性質を利用して、生・死菌を分離する研究報告 がなされているが 9-12), 今回の実験でも活性(生死)状態の 相違による誘電泳動特性の変化が確認されたといえる.

4.3 代謝活性とコンダクタンス変化の相関検討

2節で示した式(3)について、 au_{MW} をMaxwell-Wagnerの誘電緩和時間として

$$\tau_{MW} = \frac{\varepsilon_2 + 2\varepsilon_1}{\sigma_2 + 2\sigma_1} \quad , \quad \tau_0 = \frac{\varepsilon_2 - \varepsilon_1}{\sigma_2 - \sigma_1} \tag{4}$$

とおくと, Clausius-Mossotti 関数は,

$$\hat{K}(\omega) = \frac{\sigma_2 - \sigma_1}{\sigma_2 + 2\sigma_1} \left[\frac{j\omega\tau_0 + 1}{j\omega\tau_{MW} + 1} \right]$$
(5)

- 図 8 加温処理温度と ΔG の関係 (周波数:1.0 MHz, 印加電圧:10 Vp-p)
- Fig. 8 Relationship between ΔG and heat treatment temperature at 1.0 MHz and 10 Vp-p

と表すことができ、このことから、
$$\begin{cases} \lim_{\omega \tau_{MW} \to 0} [\hat{K}(\omega)] = \frac{\sigma_2 - \sigma_1}{\sigma_2 + 2\sigma_1} \\ \lim_{\omega \tau_{MW} \to \infty} [\hat{K}(\omega)] = \frac{\varepsilon_2 - \varepsilon_1}{\varepsilon_2 + 2\varepsilon_1} \end{cases}$$
(6)

という関係が得られる²⁴⁾.

これらのことから、誘電泳動による力の方向と大きさの関係は、低周波数では σ_1 および σ_2 の大小に依存し、高周波数では ε_1 および ε_2 の大小に依存することが分かる. つまりこれらの関係から、処理温度変化による、 σ/ε の変動を見極めることができる.

菌体内或いは細胞内などの生体内では,各種糖,アミノ酸, 脂質などが互いに密接な関連性を持ち,それぞれ独自の代謝 経路を経て一定の速度を保ちながら代謝される.この代謝活 動は,各代謝系に関与する酵素活性によるものであること, また代謝調節は,生体内酵素活性変化及び酵素量の増減に依 存することが知られている²⁵⁾.酵素は特異的な立体構造を持 つタンパク質であるが,タンパク質は温度によって構造が変 化するうえ,酵素反応速度は,pH,温度との相関が高い.

ここで、先述のとおり、加温処理によるストレス負荷は、 E. coli 外層の細胞壁あるいはその内側にある細胞質膜を構成 するタンパク質の変性或いは破損を引き起こすという報告が ある.それと同時に、このような状態では菌体内の各種イオ ンまたは核酸関連物質の漏洩、糖及びアミノ酸の基質輸送能 の低下、菌体内でのタンパク質凝集、各種酵素の失活などの 諸現象が生じることが知られている¹⁵⁾.さらに、微生物の致 死効果は、熱による一次的作用だけではなく、熱による細胞 膜損傷のためにそこに局在する呼吸系酵素から活性酸素が多 く発生し、それによって酸化的損傷が発生して死に至る場合 があるとの報告がある¹⁴⁾. このことから、熱処理によって、 呼吸活性が低下し、呼吸系代謝経路に何らかの影響を与えて いる可能性があるといえる.これら要因の複合的作用により、 *E. coli* の代謝活性状態は変動し、さらに *E. coli* の σ 及び ε は ストレス負荷の強度によって大きく変動すると考えられる.

今回の実験では、周波数 100 kHz の場合、加温処理条件の 相違によって、 ΔG の値に大きな変動が見られた一方で、1.0 MHz 時では、死菌状態となった 353.15 K (80 °C) 時以外で、 殆ど ΔG の変動が見られないという現象が確認された. これ は、加温処理によるストレス負荷に起因する σ 及び ε の各変 動量を比較した場合、前者の方がより支配的であったため、 低周波での ΔG 変動が顕著に現れたものと推測される. 今回、 σ が大きく変動した要因は、おそらく菌体内イオン流失量あ るいは菌の DM に対する吸収・分解能力の相違によるものと 考えられる.

5. まとめ

今回我々は, E. coli に加温処理を施すことによって,実験 的に菌状態に変化を与え,その状態の相違をマイクロセルお よび DEPIM 法で評価することを試みた.本実験結果は,将 来的に,菌の代謝活性状態をリアルタイムでモニタリングで きる可能性を示唆している.今後更に電極セルの形状,電極 パターンなどを見直すこと,また得られた情報から温度制御 などを行うためのフィードバック機構を開発することにより, 将来,精度の高い製造ライン管理システムを構築することが 出来るものと期待できる.

本実験では加温処理によって菌の代謝活性状態を調整した が,他の加温条件,或いは他の手法(例えば薬剤投与,pH 変 動等)を用いて菌の代謝活性状態を変化させた場合に,どの 様な誘電泳動特性を示すかについても追加確認したい.今回 の実験結果は,加温処理によるストレス負荷が,特に E. coli の導電率を大きく変化させたことを示唆している.これは, E. coli 菌体のタンパク質変性,あるいは菌体内からのイオン 物質の漏洩現象などに起因していると推測されるが,今回の 実験結果からは,具体的な代謝活性変動の特定には至ってお らず,更なる調査が必要であると思われる.今後,処理を施 した菌の損傷度合いを評価するために SEM 及び染色法等で の外観観察を実施する予定である.また,菌体内物質変化を 直接評価する方法として,熱或いは低温ショック応答による RNA 変性調査などを行うことによって,各種ストレスと代謝 活性の関連性について調査を進めていく.また今回は、比較 的扱いが容易な E. coli を実験菌株として用いたが、今後、実 際の醸造工程を想定し、醗酵に関与する酵母についての代謝 活性モニタリング実験を行う予定である.

謝辞

本研究の遂行にあたり,誘電泳動技術に関する助言を頂い た,東京大学 鷲津正夫教授及び九州大学 末廣純也助教授に 謝意を表す.

なお、本研究の一部は、文部科学省科学研究費補助金 (No. 17760340)の助成を受けて行われた.

参考文献

- 1) 米澤岳志: 生物工学, 78 (2000) 152
- 2) 浅見耕司: 生物工学, 78 (2000) 158
- 鷲津正夫,川端智久,黒澤修,鈴木誠一:電子情報通信学 会論文誌 C, J83-C (2000) 1
- 4) D. W. E. Allsopp, K. R. Milner, A. P. Brown and W. B. Betts : J. Phys. D: Appl. Phys., 32 (1999) 1066
- J. Suehiro, R. Yatsunami, R. Hamada and M. Hara : J. Phys. D: Appl. Phys., 32 (1999) 2814
- J. Suehiro, R. Hamada, D. Noutomi, M. Shutou and M. Hara : J. Electrostat., 57 (2003) 157
- J. Suehiro, D. Noutomi, M. Shutou and M. Hara : J. Electrostat., 58 (2003) 229
- D. Holmes, H. Morgan and N. G. Green: Biosens. Bioelectron., 21 (2006) 1621
- 9) H. Li, R. Bashir : Sens. Actuators B 86 (2002) 215
- 10) 箱田優, 脇坂嘉一, 三井信一, 北島信義:静電気学会誌,
 29 (2005) 8
- 鈴木雅登, 安川智之, 珠玖仁, 末永智一: 分析化学, 54 (2005) 1189
- 12) 箱田優, 十枝内元子, 脇坂嘉一:静電気学会誌, 30 (2006) 145
- 13) 内田諭, 円城寺隆治, 杤久保文嘉:第53回応用物理学関 係連合講演会予稿集, (2006) 1390
- 14) 土戸哲明, 坂本仁: 生物工学, 82 (2004) 193
- 15) 土戸哲明:防菌防黴, 30 (2002) 105
- H. A. Pohl: Dielectrophoresis, Cambridge Univ. Press, New York (1978)
- 17) 静電気学会:静電気ハンドブック,(1998) 850
- 18) 末廣純也:電学誌, 121 (2001) 547
- 19) 石原一彦, 何川, 片桐祐司: 検査技術, 7 (2005) 12
- 20) 森良一,中山弘明,三渕一二,光山正雄:微生物学 第6 版, p.203, 医学書院 (1991)
- H.Wex, D.M.Rawson and T.Zhang: *Electrochimica Acta.*, 51 (2006) 5157
- 22) 森地敏樹:防菌防黴, 34 (2006) 429
- 23) 土戸哲明, 松村吉信: 生物工学, 77 (1999) 225
- 24) T. B. Jones : *Electromechanics of Particle*, Cambridge Univ. press, New York (1995)
- 25) 斉藤正行, 丹波正治: 改訂基礎生化学, 講談社(1990)