......

文

論

カリウムアイオノマーの非線形誘電スペクトル 牧 伸 行^{*,**,1},張 翔^{**},守本 雄^{**},田 實 佳 郎^{**}

(2006年9月15日受付; 2006年11月15日受理)

Nonlinear Permittivities in Potassium Salt Ionomers of Ethylene Copolymer

Nobuyuki MAKI****, Sho CHO**, Yuu MORIMOTO**, Yoshiro TAJITSU**

(Received September 15, 2006; Accepted November 15, 2006)

We report the frequency spectra of complex linear and nonlinear permittivities of potassium ionomer films prepared from poly (ethylene-co-methacrylic acid) in the frequency range from 1 kHz to 1 MHz, at room temperature. A characteristic conduction relaxation phenomenon was observed in the spectra, which suggested the existence of different ion conduction mechanisms between the high and low-frequency regions. We also found that the ratio of linear to nonlinear conductivities calculated from nonlinear permittivities was closely related to the elementary process of ionic transport. Furthermore, the ratio obtained from nonlinear measurements allowed an estimate of the important parameters which characterized ionic transport in ion-conducting polymers, such as the hopping distance of ion or the size of a connected cluster of the site capable of the ion hopping, without the need for any additional assumptions in potassium ionomer films.

1. はじめに

アイオノマーとは,疎水性の高分子主鎖に少量のイオン 基を導入した高分子の総称である.なかでもエチレンアイオノ マーは,ホスト高分子である低密度ポリエチレンの性能を保 持しながら,金属イオン架橋に起因する化学的・物理的な物 性が付与されており,工業的にも広く利用されているプラスチ ックである.

アイオノマーの高次構造に関しては、疎水性の高分子マ トリックス中で、親水性の金属イオン基が凝集し、何らかの構 造を形成することが当初より指摘されてきた.1968年には LongworthとVaughanがX線回折パターンを基に ①ポリエチ レンのラメラ結晶領域、②ポリエチレンの非晶領域、及び、③ イオン凝集部の3つの領域からなる3相モデルを提案してい る¹⁾.図1に、Longworth等の提案したエチレンアイオノマーの

- キーワード:非線形誘電スペクトル、カリウムアイオノマー、 導電性、イオン凝集部
- * 三井・デュポン ポリケミカル株式会社 テクニカルセン ター (299-0108 千葉県市原市千種海岸6)
 Technical Center, DuPont Mitsui Polychemicals Co., LTD. 6 Chigusa-kaigan, Ichihara-shi, Chiba-ken 299-0108, JAPAN
- ** 関西大学大学院 工学研究科 (564-8680 大阪府吹 田市山手町 3-3-35) Graduate School of Engineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
- 1 makin@mdp.co.jp

3相モデルを示す.

現在もっとも広く認められているアイオノマーの高次構造モ デルは、1990年にEisenberg、Hird、Mooreが提案したモデル (EHMモデル)である²⁾. EHMモデルでは、マルチプレットと称 される静電的に凝集したイオン凝集体の最小単位が、さらに 凝集した、イオンクラスターの概念が提案されている. マルチ プレットのまわりでは、イオン凝集力の影響で、高分子鎖運動 の束縛された領域が存在する. アイオノマー中のマルチプレ ットが増加すると、隣接するマルチプレットの運動束縛領域は 重なり、さらに大きな運動束縛領域を形成する. この大きな運 動束縛領域を、Eisenbergらはイオンクラスターと名付けた. イ オンクラスターの存在は、アイオノマーの力学的性質と誘電 的性質に大きな影響を与えているとされており、力学的挙動 については、これまで多くの報告がされている^{3.4)}. しかし、ア

Fig.1 The structure model of ethylene ionomer as proposed by Longworth et al $^{1)}$.

イオノマーの誘電的挙動は非常に小さなものであると予測されることから,誘電的挙動に関する報告は例は少ない⁵⁾.

ところで、エチレンアイオノマーの金属イオンは、亜鉛ある いはナトリウムが一般的であるが、カリウムを金属イオンとする アイオノマー(カリウムアイオノマー)は、アイオノマー樹脂自体 が導電性を示すことが報告されている⁶.この特長に注目して、 ここ10年程の間、カリウムアイオノマーは帯電防止材料として、 電子部品包装等の工業分野において広く利用されている⁷⁾.

我々は,以前に,カリウムアイオノマーの電荷挙動の直接 的 な 把 握 が 可 能 な パ ル ス 静 電 応 力 法 (Pulsed Eleotroacoustic Method)⁸⁻¹⁰⁾を用いた空間電荷分布の測定 を行っている.得られている代表的な結果を,図2,3に示す. これは一般的な絶縁性プラスチックである直鎖状低密度ポリ エチレン(LLDPE)と、代表的なカリウムアイオノマーの空間電 荷分布の測定結果を示す.なお,図の縦軸方向は電荷密度 分布を示し、横軸方向は試料の厚み方向を示す.また、右 側が正極側, 左側は負極側に対応し, 上方の模式図はフィ ルム断面を示す.図2に示すLLDPEの場合,正極側の実電 荷,及び負極側の実電荷が観測された.なお,分解能の影 響で正・負電極の近傍に誘導分極は観測されていない. これ に対し、カリウムアイオノマーでは図3に示すように、正極側の 実電荷は観測されたが,負極側の実電荷は観測されず,正 極側に大きな負の電荷分布が観測された.この測定結果は, LLDPEの空間電荷分布と大きく異なり、カリウムアイオノマー

Fig.2 Charge distribution of LLDPE film.

の電界下における見かけ上の電荷移動を示唆していることを 報告している¹¹⁾.しかしながら,用いた測定装置の分解能が 10μmであるため,ミクロな領域での電荷挙動に関する情報 までは得らなかった.

一方,高分子の研究では誘電スペクトロスコピーの手法を 駆使した研究が,電荷移動に関する有益な情報を与えてい る.しかしながら,誘電スペクトロスコピー測定の多くは印加電 界に電流が比例する領域,即ち線形領域に限られていた. 田實は,従来の線形領域の導電スペクトルの研究を,非線 形領域にまで拡張することが,誘電挙動の解明に大変有効 であることを示してきた¹²⁾.

我々はカリウムアイオノマーを用いた線形の誘電スペクトル の精密測定を行い、Longworth、Eisenberg等により提案され ている高次構造モデルにより予測されてきた電荷挙動に対 応すると思われる誘電緩和現象をはじめて見出し、報告した ¹³⁾.今回,我々は、誘電測定を非線形にまで発展させ、この 緩和挙動のより詳細な情報を得るべく実験を行い、有益な結 果を得たので報告する.

2. 実 験

2.1 カリウムアイオノマー樹脂

アイオノマーの製造プロセスには,溶融法と滴定法があるが,本検討では押出機による溶融法を用いた¹⁴⁾.まず,ホスト高分子として,エチレン 85wt%と,メタクリル酸

Fig.3 Charge distribution of a potassium ionomer film.

(CH₂=C(CH₃)COOH, 分子量86.1)15wt%を,高圧ラジカル 重合法により重合し,エチレン・メタクリル酸共重合体 (E-15MAA)を得た.次に,金属イオン源としてカリウム塩を用 意し,E-15MAAとカリウム塩を,E-15MAA中のメタクリル酸と カリウム(K,原子量39.1)がモル比で,40%(E-15MAA-0.4K), 60%(E-15MAA-0.6K),80%(E-15MAA-0.8K)となるように予 めブレンドし,140℃から260℃に設定した押出機を用いて, 溶融中和反応によりカリウムアイオノマーを得た.図4にエチ レン・メタクリル酸共重合体とカリウムアイオノマーの化学構造 を示す.

作成したE-15MAA, E-15MAA-0.4K, E-15MAA-0.6K, E-15MAA-0.8Kを用いて, 180℃に設定したインフレーション フィルム成形機により, それぞれ50 µ m厚のフィルムを作成し た.

2.2 測定試料

作成した各カリウムアイオノマーフィルムに、電極として金を 蒸着して、誘電スペクトル測定用の試料とした¹⁵⁾.カリウムア イオノマーフィルムはバルクの導電性が低いため、表面方向 に流れる電流の影響を排除しなくてはならない.このため、測 定試料にはガード電極を設けた.また、試料厚みに対して大 きな電極面積とすることで、電界が均一に試料に印加される ようにした.

2.3 非線形測定システムの改善

カリウムアイオノマーフィルムの誘電測定,導電測定には, 田實等が開発してきた線形及び非線形複素誘電・導電測定 装置を用いた.装置の詳細は既報¹²⁾の他であるので,簡単 に以下に原理をまとめる.

(1)

本システムでは、試料に振幅E₀の正弦波、

 $E = E_0 \cos \omega t$

エチレン・メタクリル酸共重合体

 $-(CH_2-CH_2)_n-(CH_2-C)_n-(CH_2-C)_n-(CH_2-C)_n-(COOH)$

カリウムアイオノマー

 $\begin{array}{c} \mathsf{CH}_3 & \mathsf{CH}_3\\ -(\mathsf{CH}_2-\mathsf{CH}_2)_{\mathsf{p}}-(\mathsf{CH}_2-\mathsf{C})_{\mathsf{q}}-(\mathsf{CH}_2-\mathsf{C}), -\\ \mathsf{COO}^{-}\mathsf{K}^{\mathsf{f}} & \mathsf{COOH} \end{array}$

Fig.4 Chemical structure of ethylene methacrylic acid copolymer and potassium ionomer.

を印加,その応答電荷D(t)(応答電流I(t))をチャージアンプ (及び電流アンプ併用)で検出する.検出されたD(t)(または 電流I(t))と,印加電界の信号E(t)により,非線形複素誘電 率 ϵ_n^* (または導電率 σ_n^*)

$$\mathcal{E}_n^* = \mathcal{E}_n' - j \mathcal{E}_n'' \quad (n=1,2,3\cdots) \tag{2}$$

$$\sigma_n^* = \sigma_n' + j\sigma_n'' \quad (n=1,2,3\cdots) \tag{3}$$

を求める.本システムの精度は,図5中における,信号器,ア ンプ,S/N比の高い信号系が支えている.

カリウムアイオノマーフィルムにおける誘電緩和現象は、従 来田實等が扱ってきた誘電緩和現象¹⁶⁻¹⁸⁾より、信号換算で 1/100程度とはるかに小さく¹³⁾、従来の非線形測定の精度を 超えていた.そこで、今回我々は、測定周波数域を大幅に制 限(25 mHz~10 MHz(約9桁)を1 kHz~1 MHz(3桁);エチレ ンアイオノマー緩和の存在する範囲へ制限)、またアンプと信 号発生器のシステム構成部材を大きく変更し、さらにチュー ニングを周波数特化することで、測定精度をあげた.なお、ア ンプ切り替えのスイッチノイズが大きいことから、アンプは今回 の測定域でより精度あげることができた電荷アンプのみとし、 電流アンプは外した.更に究極のノイズ対策とし、温度制御 部(ヒータ等)を外し、外乱信号を削減した(そのため、今回は 室温のみの測定である).その結果、従来装置より、 1KHz~1MHZの範囲内であれば非線形誘電精度は70dB程 向上した.

3. 結 果

図 6 に室温(28.5℃)における, カリウムイオンを全く含まない エチレン・メタクリル酸共重合体 E-15MAAと, それぞれカリウム イオンで 40mol%(E-15MAA-0.4K), 60mol%(E-15MAA-0.6K), 80mol%(E-15MAA-0.8K)中和した, カリウムアイオノマーフィル ムの線形誘電率虚部 ϵ_1 "のスペクトルをまとめた. E-15MAA-0.4K, E-15MAA-0.6K, E-15MAA-0.8K 全てのカリウ

Fig.5 Schematic diagram of experimental system for measuring permittivities.¹²⁾

ムアイオノマーにおいて、10kHzから100kHzに誘電緩和を示す ピークが存在している(図6矢印部分).これに対して、カリウムイ オンを全く含まないE-15MAAでは、緩和現象を示すピークが発 現していない.この測定結果は、誘電緩和現象の存在が、カリウ ムイオンの存在に直接起因していることを裏付けている.また、 カリウムイオン濃度が減少するにつれて、ピーク強度が小さくな っていることがわかる.これに対して、3次の非線形複素誘電 スペクトルである $\epsilon_3^* = \epsilon_3' - j \epsilon_3$ "はより複雑な形状を示した. 図7に ϵ_3^* の測定結果を示す.3次の非線形複素誘電率実 部 ϵ_3' 、虚部 ϵ_3 "とも、カリウムイオン濃度が 80mol%から 60mol%に下がると、緩和現象を示すピーク強度が急激に小さく なっている.

田實は, 観測した高分子の線形及び非線形の導電緩和スペクトルを統一的に再現する緩和関数 σ_{melax}¹²⁾

$$\sigma_{nrelax} = \Delta \sigma_n \frac{j\omega\tau_n}{\left(1 + \left(j\omega\tau_n\right)^{\beta n}\right)^{\alpha n}} \tag{4}$$

 $\sigma_n^* = jn\omega\varepsilon_n^* \quad (n=1,3) \tag{5}$

を,報告している.ここで,緩和強度 $\Delta \sigma_n$,緩和時間 τ_n ,緩 和時間の分布を表す指数 α_n , β_n である.図8に(4),(5)式を 用いて, E-15MAA-0.8Kの非線形誘電スペクトルの「曲線あて はめ(fitting)」をした結果を示す.ここで, $\alpha_3 = 2.98$, $\beta_3 = 0.88$, $\alpha_3 = 5.03 \times 10^{-6} s$, $\Delta \sigma_3 = 2.12 \times 10^{-19} SmV^2$ である.ここで得た $\Delta \sigma_3$ の値は, イオンが高分子中を自由に動けるイオン導電性

Fig.6 ε_1 "/ ε_0 spectrum of potassium ionomer, exhibiting a change in potassium ion content.

高分子の値,例えば、ポリエチレンオキシド系高分子の $\Delta \sigma_8$ = 8.01x10⁻¹⁷SmV⁻²と比べ非常に小さい¹⁶⁾.また、電荷が比 較的束縛されている高分子で得られている $\Delta \sigma_8$ = 5.18x10⁻¹⁸ よりも小さい^{17,18)}.即ち電荷移動がかなりこのアイオノマー は束縛を受けていることを示唆する.図中の〇は ϵ_3 '、●は ϵ_3 "の測定値を、実線は(4),(5)式に基づく計算結果を示す. 3次の非線形誘電スペクトルにおいて、図に示すように、10 kHz以上では、 ϵ_3 'と ϵ_3 "のピークを含め、良く再現できること が分かる.しかしながら、1 kHzから10 kHzの範囲では ϵ_3 "の 計算値と測定値が大きく異なっている.これは、20 kHz近傍 にある緩和現象に別の現象(図6の ϵ_1 "の1 kHz以下の立ち 上がりに反映する電極分極などの影響)が重畳されているた めと考えている.また、E-15MAA-0.4K、E-15MAA-0.6Kで、こ の緩和スペクトルが小さく非線形装置の精度の限界もあり、はっ きりせず、(4),(5)式の曲線あてはめはできなかった.

4. 考 察

イオン易動が様々なhoppingタイプを示す場合について得ら れる電流Iは、厳密に計算されている^{12,19,20)}.特に最近では導電 性高分子の電荷移動機構については、dynamic percolation theory^{21,22)}が分子鎖のセグメント運動を基にしたdynamicsを反映 したモデルとして注目を集めており¹⁹⁾、ポリエチレンオキシド系 高分子については非線形性を含めて解析が成功している¹²⁾.た だし、その扱いは煩雑を極める上に、解析には詳細な構造の 情報が必要であり、カリウムアイオノマーのような、複雑な高

Fig.7 Frequency spectra of the third-order nonlinear permittivities in potassium ionomers.

次構造を持つ高分子の場合には難しい¹⁹⁾. 通常,構造面の 情報が少ない場合,解析にはhopping理論²⁰⁾を用いる. これ は,hopping理論が,キャリアーがsite間をhoppingで移動する とう形で展開されるために,構造の情報をすべてsiteやbondと いう形で置き換え得るという利点による.本報告においても, hopping理論を用いるが,より一般的な解析とするために,イ オンのhoppingが近接site間のみに許されるという単純モデル ではなく,エネルギー的に低い位置へもhoppingが許される, より一般的なモデル variable range hopping model (VRHM)²⁰⁾を用いる.

$$I = 2eNaP_0 \exp(-\frac{\Delta U}{\kappa T})\sinh(\frac{eaE}{2\kappa T})$$
(6)

ここで平均hopping距離a,印加電界E,絶対温度T,極限的なhopping確率 P_0 ,素電荷e,キャリアーの数密度N,Boltzmann定数 κ ,site間の活性化エネルギー ΔU である.ここで,*I*を形式的にEで展開すると,

$$I = \sigma_1 E + \sigma_3 E^3 + \cdots$$
 (7)

$$\sigma_1 = \frac{1}{\kappa T} e^2 a^2 P_0 N \exp(-\frac{\Delta U}{\kappa T})$$
(8)

$$\sigma_3 = \frac{1}{24\kappa^3 T^3} e^4 a^4 P_0 N \exp(-\frac{\Delta U}{\kappa T}) \tag{9}$$

を得る.ここで,線形複素誘電スペクトルから(8)式を用いてaのfittingを試みても,未知定数が多く,何らかの仮定を導入しなければ不可能である.ところが, $\sigma_1 \ge \sigma_3$ の比は次の式で表せる¹²⁾.

つまり、 $\sigma_1 \geq \sigma_3$ の値が実験的に評価ができれば、(10)式を

$$\frac{\sigma_3}{\sigma_1} = \frac{e^2 a^2}{24\kappa^2 T^2} \tag{10}$$

用い一義的に実験値のみで、平均hopping距離aの値を求めることが可能になる.ここでは、カリウムイオンで80mol%中和したエチレンアイオノマー(E-15MAA-0.8K)の実験より得た高周波側及び低周波側の極限値の $\sigma_1 \ge \sigma_3 \ge \pi$ 用いてaの評価を行い、 $a=3nm \ge a=52nm \ge a$

これまで小角散乱X線回析や,電子顕微鏡観察,原子間 力顕微鏡法により報告されている²³⁻²⁶⁾アイオノマーのイオン 凝集体サイズは数nmであることから,我々の得た平均 hopping距離*a*=3nmはイオン凝集体内での電荷移動距離(イ オン凝集体のサイズ)に対応していると考えている.また,一 般にカリウムアイオノマーの導電性は,高濃度にカリウムイオ ンで中和された場合にのみ発現することが知られている(例え ば,E-15MAAベースでは約80mol%中和以上で,導電性が 急激に発現する)⁶.さらに,カリウムやナトリウムアイオノマー のイオン凝集体形成は中和度60%程度で完成し,それ以上 の中和度ではミクロ相分離が起こることが報告されている²⁷⁾. 我々は,これらの報告を踏まえ,高濃度にカリウムイオンで中 和された場合において,カリウムアイオノマーのイオン凝集部 は,平均hopping距離a=52nmに対応する,誘電緩和現象に 関与する発達した,ある種のイオンクラスター構造(以降 domainと称する)を形成するものと考えている.

なお,カリウムイオンで40mol%(E-15MAA-0.4K), 60mol%(E-15MAA-0.6K)中和したエチレンアイオノマーでは, 3次の非線形複素スペクトル測定が出来ていない.これは domain構造が形成されないためか,測定精度の限界かは現 在のところは不明である.

5. まとめ

カリウムアイオノマーの非線形複素誘電率の測定が可能な 実験システムを構築し,非線形複素誘電率のスペクトルを測

Fig.8 Comparison of observed (circles) and fitted (solid lines) frequency spectra of the third-order nonlinear permittivities of E-15MAA-0.8K.

定した. 測定した誘電スペクトルは, 緩和現象を伴い複雑な 周波数依存性を示した. これらのスペクトルを統一的に再現 できる経験式を用い, 測定した非線形誘電率の値を使うこと で, 実験値以外の何らの仮定なしに電荷移動に関わる基本 的なhopping距離を評価することができた.

これまで,カリウムアイオノマーを含むエチレンアイオノマー で提唱されているイオン凝集体の大きさは数nmであり,これ は本検討で確認された,平均hopping距離*a*=3nmが示す電 荷移動の素過程(Elementary Process)に対応していると考え ている.これに対し*a*=52nmの測定結果は,E-15MAA-0.8Kに おける何らかの高次構造(domain)を示しているものと考えている. これらの結果は,これまでにエチレンアイオノマーにおいて提 唱されている,高次構造モデル¹⁾や,イオンクラスター領域の 存在²⁾と,カリウムアイオノマーにおける,誘電緩和現象が密 接に関係していることを示すものと考えている. 今後は,複素 非線形誘電スペクトルの温度依存性の測定を可能にし,カリ ウムアイオノマー中の電荷挙動の解明につなげたいと考えて いる.

5. 参考文献

- 1) R. Longworth, D. J. Vaughan, Nature, 218 (1968) 85
- Eisenberg, B. Hird, R. B. Moore, Macromolecules, 23 (1990) 4098
- E. Hirasawa, Y. Yamamoto, K. Tadano, S. Yano, J. Appli polym. Sci., 42 (1991) 351
- P. Vanhooren, R. A. Register, Macromolecules, 29 (1996) 602
- S. Yano, N. Nagano, M. Hattori, E. Hirasawa, K. Tadano, Macromolecures, 25, 368 (1992)
- 6) H. Tachino, H. Hara, E. Hirasawa, S. Kutsumizu, S. Yano, Polym. J., 26 (1994) 1170
- N. Maki, S. Nakano, H. Sasaki, Packag. Technol. Sci., 17 (2004) 249
- 8) T. Takada, IEEE Trans. DEI, 6 (1999) 519
- Y. Li, T. Takada, IEEE Electrical Insulation Magazine, 10 (1994) 16

- 10) T. Maeno, K. Fukunaga, IEEE Trans. DEI, 6 (1996) 754
- 牧伸行,中野重則,金崎雅義,田實佳郎:静電気学会講 演論文集,2005,P223,静電気学会(2005)
- 12) Y. Tajitsu, J. Mater. Sci., 31 (1996) 2081
- 13) 牧伸行,小林俊,伊多波健,金崎雅義,田實佳郎:静電気学会誌, 31, 134 (2006)
- 14) 矢野伸一,平沢栄作編:アイオノマー・イオン性高分子材料,シーエムシー出版(2004)
- N. Maki, S. Nakano, M. Kanasaki, and Y. Tajitsu, The 8th SPSJ International Polymer Conference preprints (IPC 2005), 145
- 16) Y. Tajitsu, J. Materials Sci. Lett., 18, 1287 (1999).
- 17) Y. Tajitsu, J. Electrostatics, 55, 299 (2002).
- 18) Y. Tajitsu, J. Electrostatics, 62, 257 (2004).
- J. R. MacCallum and C. A. Vincent, ed.: Polymer Electrolyte Reviews-2, Elsevier Appl. Sci., London and New York (1989).
- 20) N. F. Mott and E. A. Davis:Electronic Processes in Noncrystalline Materials, 2nd. Ed., Clarendon (1979).
- 21) S. D. Druger, M. A. Ratner and A. Nitzan, Phys. Rev., B31, 3939 (1985)
- 22) A. K. Harison and R. Zwanzing, Phys. Rev., A32, 1072 (1985)
- S. Kutsumuzi, H. Tagawa, Y. Muroga, S. Yano, Macromolecules, 33, 3818 (2000)
- 24) S. Kutsumuzi, K. Tadano, Y. Matsuda, M. Goto, H. Tachino, H. Hara, E. Hirasawa, H. Tagawa, Y. Muroga, S. Yano, Macromolecules, 35, 9044 (2000)
- 25) J. H. Laurer, K. I. Winey, Macromolecules, **31**, 9106 (1998)
- 26) B. B. Sauer, R. S. McLean, Macromolecules, **33**, 7939 (2000)
- 27) E. Hirasawa, Y. yamamoto, K. Tadano, S. Yano, J. Appl. Polym. Sci., 42, 351 (1991)