論 文

電界を用いた乳化法の開発とその応用

中野道彦*, 國谷彩*, 高島和則*, 桂進司*,**, 水野彰*,¹ (2005年8月1日受付; 2006年1月17日受理)

Electrostatic Emulsification by AC Electric Field and Biological Application

Michihiko NAKANO*, Sayaka KUNITANI*, Kazunori TAKASHIMA*,

Shinji KATSURA*,** and Akira MIZUNO*,1

(Received August 1, 2005; Accepted January 17, 2006)

Water-in-oil (W/O) emulsion has been used for biological and combinatorial application. In these applications, many water droplets are served as micro reactors and several reactions are carried out simultaneously. To make W/O emulsion, stirring device or homogenizer are used conventionally. Since these devices such as magnetic stirrer bar are not disposable, they have many risks of contamination. In addition, these methods require a certain amount of volume at least 1 mL. In this paper, it was investigated that novel emulsification methods using AC voltage. There were two approaches for emulsification: electrodes placed inside and outside of micro-tube. For the internal electrode method, high voltage electrode was placed in micro-tube. On the other hand, for the external electrode method, high voltage and ground electrodes were placed on outside wall of micro-tube. In the both cases, when AC voltage was applied to the electrode, water solution that was placed at bottom of the micro-tube was dispersed into oil phase. Moreover, it was confirmed that this emulsification did not affect polymerase chain reaction. These methods have some features: preparing electrode inexpensively, especially for external method, non-contact operation to prevent contamination from mixing devices and requiring small amount of volume, for example, $100 \,\mu$ L to $500 \,\mu$ L.

1. はじめに

W/O (water-in-oil) エマルジョンは、微小な水滴が油中に 分散している状態である.近年、このW/O エマルジョンを 利用した反応系が注目を浴びている.これは、微小な水滴の ひとつひとつをマイクロリアクターとして利用し、それぞれ の水滴に別々の試料を入れて反応を行う方法である.W/Oエ マルジョンを用いることで、ウェルプレートを用いるよりも 簡単に無数のマイクロリアクターを調製できる.例えば、遺 伝子ライブラリーから酵素などを直接的進化(directed evolution)によって選択するといったような、多種類の基質

キーワード:乳化,電気乳化,液滴,微粒化

¹ mizuno@eco.tut.ac.jp

を同時に反応させる、コンビナトリアルケミストリーに威力 を発揮する¹⁾.また、微小な空間で反応を行うことで、その 内部の基質濃度は等価的に高濃度になり、その中で起こる化 学反応が高効率化される.これの作用を利用した方法として、 1分子 PCR (polymerase chain reaction) 法が挙げられる²⁾.

このような W/O エマルジョンを応用した反応系では,主 に水溶液と油相とをマグネティックスターラーやホモジナ イザーを使って乳化させている.これらの装置を用いる場合, その大きさから,ある程度の容量(少なくとも1mL)がない と乳化することができず,また,それらの機材は繰り返し使 用されることが多いため,特に生物学的試料を用いるときに は、クロス・コンタミネーションの原因となるといった問題 がある.

ここでは、機械的な攪拌装置を使わない方法として、電界 を用いた乳化について検討した.少量、例えば全量 100~ 500µL(水溶液は 5~20µL)で乳化すること、攪拌部分が使 い捨てにできるぐらい安価であること、あるいは試料溶液と 攪拌部分が一切接触することがない、というような攪拌方法

^{*} 豊橋技術科学大学エコロジー工学系(441-8580 愛知県豊 橋市天伯町雲雀ヶ丘 1-1) Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan.

^{**} 東京大学電気工学科(113-8656 東京都文京区本郷 7-3-1) Department of Electrical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

の検討を行った.

電界と乳化との関係について、電界を用いた解乳化は多く の研究が行われている³⁾.また、電界による乳化については、 ノズル先端に電圧を印加して連続的に細かな水滴を油相に 形成する電気乳化法⁴⁾がある.しかし、ここで示すような油 相と水相とを静止した状態から乳化する方法についてはほ とんど研究されていない.本論文では、電界によって静置し た状態の油相と水相とを混合・乳化できることを示し、その 乳化の様子や得られた液滴径などについて報告する.

さらに、ここで示した電界を用いた方法が、生物学的試料 に影響を与えるかどうかを調べるために、PCR を行って、そ の影響を検討した.

2. 静電乳化

電界を用いる方法として、電界を印加するための電極を容 器の内部、あるいは外部に設置した場合の2種類の方法を試 みた.容器にはプラスチック製マイクロチューブを用いた. 電極を内部に設置する場合は、容器内部に高電圧電極である 金属線を配置し、マイクロチューブを設置してあるアルミニ ウム製チューブラックを接地電極とした.外部に設置する場 合は、プラスチック製マイクロチューブの外部の2箇所にア

Fig.1 Experimental setup in the case of internal electrode.

(A) Components, (B) Experimental setup.

ルミニウムテープを巻いて電極とした.

2.1 実験方法

2.1.1 内部電極

ここでは,油相に界面活性剤を加えて界面張力を変化させたときの比較や,水相に純水とKCI水溶液を用いて導電率の違いによる比較を行った.

プラスチック製マイクロチューブには、1.5mL マイクロチ ューブ (アイビス)を用い、試料の量比は油相:水相=500µL: 20µL とした.油相に菜種油 (ナカライテスク)を用い、こ こに界面活性剤である Tween 80 (Sigma)を1% (v/v)加え たものと、加えないものを用意した.水溶液には、Milli-Q水 (超純水)と 10mM KCI 溶液を用いた.

ガラスキャピラリー (内径 0.5mm, 外径 1mm, G-1, Narishige)の中にタングステン線 (0.3mm)を導入したもの を高電圧電極として用いた (図 1-A).また,ガラスキャピラ リーの先端 (マイクロチューブの底部側)はシリコーンシー ラント (KE-45T,信越シリコーン)で封印した.電極にこの ような形状を用いたのは,金属をガラスで覆うことで,電圧 印加中の電極反応 (水の電気分解や金属材料の溶出)を抑え るためである.

マイクロチューブ内に試料溶液を入れ,図1-Bに示すよう に高電圧電極を設置し、そのマイクロチューブをアルミニウ ムブロック(CHT100-CB, Iwaki)に設置した.また、この アルミブロックを接地電極とした.この状態で高電圧電極に インバータネオントランス(M-5、レシップ)を用いて、交 流高電圧(およそ17kHz)を印加した.電圧値は1次側に接 続したスライダック(S-130-10、山菱電機)で調整した.

乳化後の水滴は,正立型顕微鏡 (Axioplan, Carl Zeiss)を 用いて観察し (20 倍対物レンズ),撮影した画像から水滴径 を計測した.

また,乳化の様子を観察するために,水道水を入れたビー カーに高電圧電極を設置したマイクロチューブを浮かべて, 水道水を接地し,電圧を印加して乳化させる実験も行った. この乳化の様子は,デジタルマイクロスコープ(VH-5000, Keyence)を用いて観察した.

図2 実験装置(外部電極)

Fig.2 Experimental setup in the case of external electrodes.

2.1.2 外部電極

外部電極としてマイクロチューブの2箇所にアルミニウム テープを巻いた.水溶液には生物学的試料への影響を見るた めに PCR 溶液を用いた.

プラスチック製マイクロチューブに、0.2mL マイクロチュ ーブ (PCR-02-LC, Axygen)を用い,界面活性剤 Tween 80 (1% v/v)を含む菜種油 100µL, PCR 溶液(組成は後述)5µL を試 料溶液とした.マイクロチューブの外側に図2のようにマイ クロチューブの底部と試料溶液の液面にアルミテープを巻 いて電極とした.底部の電極にインバータネオントランスを 接続して高電圧を印加して、上部の電極を接地した.また, 乳化の様子は、デジタルマイクロスコープを用いて観察した.

乳化後の水滴は、上述したように、正立型顕微鏡を用いて 観察し、撮影した画像から水滴径を計測した.

2.2 結果と考察

2.2.1 内部電極

菜種油(500µL)と水溶液(20µL)をマイクロチューブ内 に導入し,静置した状態で交流高電圧(約17kHz)を印加し た.電圧印加と同時に水溶液が油中に分散し始め,最終的に は全体が白濁した.図3は,菜種油とMilli-Q水を用いて, 7kVopの交流電圧を印加したときの乳化の様子である.電圧 を印加すると電極の周りが乳化し始め(図3-B),10秒後に

図4 乳化の様子1

(A) Milli-Q水, (B) KCl水溶液.界面活性剤(1%)
 を含む菜種油を使用. 左から電圧印加時間が1,3,5,10分.

Fig.4 Photographs of W/O emulsion 1.

(A) Milli-Q water, (B) KCl solution. Rapeseed oil including surfactant (1%) was used. voltage applying time (left to right) was 1, 3, 5 and 10 min, respectively.

(A) セットアップ,(B) 電圧印加3秒後,(C) 電圧 印加10秒後

Fig.3 Emulsification by AC electric field.

(A) Setup, (B) after 3 seconds and (C) 10 seconds.

図5 乳化の様子2

(A) Milli-Q 水, (B) KCl 水溶液. 界面活性剤(1%) を含まない菜種油を使用. 左から電圧印加時間が1,3, 5,10分.

Fig.5 Photographs of W/O emulsion 2.

(A) Milli-Q water, (B) KCl solution. These were in the case of without surfactant. Voltage applying time (left to right) was 1, 3, 5 and 10 min, respectively.

はほぼ全体が白濁化した(図 3-C).

誘電性液体の中に導電性の水滴,あるいは導電性の小さな 水滴が存在するとき,そこに電界を印加すると水滴の表面が 電界から力を受けて,その水滴が電界方向に引き伸ばされて 楕円形になったり,その楕円の先端から小さな液滴に分裂し たりするという現象が,実験的にも理論的にも報告されてい る⁵.液滴の分裂は,界面張力と電界からの力のバランスに よって支配される.

ここで見られた乳化現象は、この電界による液滴の分裂と 同様であると考えられる.電界を印加することで、マイクロ チューブ底部の水溶液と油相の境界面でまず液滴の噴出が 起こり、その噴出された液滴がさらに電界中で微小化してい ると考えられる.以前の報告で、今回用いたインバータネオ ントランスによって発生する交流電界(17kHz)を用いた場 合は、液滴があまり引き伸ばされずに、微小な液滴に分裂し ていくということを観察しており^の、本法においても同様の 現象が起こっていると考えられる.また、乳化の初期段階に おいて、電極の周りが白濁することに関しては、電極の形状 からその部分がより強い電界を形成しているためであると 考えている.

様々に条件を変えたときの乳化の様子と液滴径について

表1 液滴径1

Table 1 Diameter of the droplets 1.								
Time	Diameter*	CV	Condition					
[min]	[µm]	[%]	Rapeseed oil	Water				
1	8.58±4.33	50.4		Milli-Q				
3	6.98±3.58	51.3	10/ T 00					
5	7.33±4.13	56.4	1% 1ween 80					
10	8.07±3.86	47.9						
1	7.43±4.52	60.8						
3	7.32±4.09	55.9	10/ 55 00	10mM KCl				
5	7.94±3.65	46.0	1% Iween 80					
10	6.25±2.87	45.9						
1	7.31±4.14	56.6		Milli-Q				
3	6.69±3.14	46.9						
5	7.08±2.93	41.3	No surfactant					
10	6.43±2.78	43.2						
1	8.82±4.01	45.4						
3	6.71±2.60	38.7		10 16 16 7				
5	7.44±3.00	40.4	No surfactant	10mM KCl				
10	7.38±3.27	44.4						
	1 275							

*Mean±SD

述べる. 印加電圧値を 7kV_{0.P}に固定して,電圧印加時間,界 面活性剤,水溶液の導電率を変化させたときの試料溶液の様 子を図4および図5に示す. 図4では,界面活性剤を含む菜 種油を用い,図5では,界面活性剤を含まない菜種油を用い た.水溶液には Milli-Q水(図4-A,図5-A)と10mM KCl 水溶液(図4-B,図5-B)を用い,電圧印加時間を1,3,5, 10分と変化させた.

界面活性剤の有無(図4:有,図5:無)を比べると,界 面活性剤が入っているほう,すなわち界面張力が小さなほう がより均一に乳化していることがわかる.また,界面活性剤 を含まない場合(図5)で,Milli-Q水(図5-A)とKCI水溶 液(図5-B)を比べると,KCI水溶液のほうがより均一にな っていた.特に,印加時間1分ではその乳化状態の違いが顕 著であった.一方,界面活性剤がある場合は,Milli-Q水(図 4-A)とKCI水溶液(図4-B)との間に顕著な違いが見られ なかった.

これらの結果から,電界を用いて乳化した場合,界面活性 剤を入れなくても乳化が行えること,界面活性剤が無い場合 (界面張力が大きな場合)は,水溶液の導電率に影響される ことがわかった.

表1に図4,図5のエマルジョンを顕微鏡観察して計測し た液滴径を示す.印加時間が短く,全体が乳化していない試 料では,白濁している部分をサンプリングした.

全体を通して変動係数が大きく, *CV* (Coefficient of Variance) 値が 40~60%になった. 印加時間が 1 分と短い場合は, 液滴径が他の条件に比べて大きく, *CV* 値も大きい. 3 分以上電圧を印加した場合は, それぞれの条件で, 液滴径が 大きく変わることがなかった.

表2に印加電圧の大きさを変化させたときの液滴径を示す. このとき,電圧印加時間は5分とし,1%Tween 80を含む菜 種油(500µL)と Milli-Q水(20µL)を用いた.

印加電圧を4、6、8、10kV_{0-P}と変化させたが液滴径に大き な変化はなかった.しかし、10kV_{0-P}を印加した場合は他の場 合に比べて *CV* 値が低かった.また、4kV_{0-P} のときは、図 5-A

表 2 液滴径 2

Table 2 Diameter of the droplets 2

Applied voltage	Diameter	CV [%]	
[kV _{0-P}]	[µm]		
4	9.44±4.37	46.3	
6	9.83±4.25	43.3	
8	8.74±4.54	51.9	
10	10.84±4.08	37.6	

*Mean±SD

の印加時間1分と同じようにまばらに乳化していた.

表1と表2の結果より、ここで用いた条件の電圧印加時間 および電圧の大きさと液滴径に顕著な関係がないというこ とがわかった. つまり、4~10kV₀pの範囲では液滴径が大き く変わらないということが言える. ここで得られた液滴より も大きな液滴を得るためには、より小さな電圧を、また、小 さな液滴を得るためには、十分に大きな電圧を印加する必要 があると考えられる. ただし、図4と図5の図の比較から、 界面張力の違いによって全体の白濁度が変わっていること から、マイクロチューブ底部に沈んでいる水溶液部(20μL) から液滴を分散させるためには、電圧値の大きさや印加時間 が影響していると考えられる.

ここで得られた液滴は、変動係数が非常に大きく単分散と は言えない.上述したような W/O エマルジョンを生化学反 応系に用いる場合は、反応の均一性を保証するために、形成 される液滴は単分散であることが望ましい.そのため、今後 の改良がさらに必要である.検討課題としては、電極形状や 周波数依存性などが挙げられる.

2.2.2 外部電極

図2に示すようにマイクロチューブチューブの外側に電極 を配置してもマイクロチューブ内で乳化する様子が確認さ れた.ここで用いた0.2mL チューブはポリプロピレン製で厚

Aqueous solution (PCR mix) (A)

(D)

(C)

図6 乳化の様子 (外部電極)

(A) セットアップ,(B) 電圧印加3秒後,(C) 10秒後.

(A) Experimental setup, (B) after 3 seconds and (C) 10 seconds.

さが 0.3~0.5mm であった. 外側に電極を配置したときの乳 化の様子を図6に示す. 電圧を印加すると、マイクロチュー ブ底部の水溶液が接地電極側に分散していく様子が確認さ れた. このとき、マイクロチューブの内壁部の水溶液と油相 との界面から小さな水滴が接地電極(上部)に向かって分散 していった. 導体である水溶液(Milli-Q水, 導電率: 1.47μS/cm) 内は同電位であると考えられるため, 水-油界面 に特定の電位が誘導されると考えられる.このとき、水-油 界面はマイクロチューブ内の円錐状の部分で形成されてい るので、水 - 油界面の外縁部(マイクロチューブに接してい る部分)の電界がエッジの効果によって中心部分に比べて大 きくなる.この電界形成は電界計算ソフト (Maxwell SV) を 用いた電界計算の結果からも確認されている. この電界によ って、内部に電極を置いた場合と同じように、水溶液部分か ら液滴が噴出していると考えられる. ここで得られた液滴径 の分布は、後述の表3に示してある.

外部電極による乳化は、試料溶液と攪拌部分が接触しない ので、攪拌作業による汚染物質の混入を全く考えなくても良 いという特徴がある.表3にあるように、内部に電極を置い た場合と同様に、変動係数が大きいことが今後の検討課題で ある.

3. PCR への応用

これまでに、W/O エマルジョンを利用した 1 分子の鋳型 DNA からの PCR 増幅に成功している²⁾. これは、鋳型 DNA を微小な液滴の中に導入することで、鋳型 DNA 濃度を等価 的に高濃度にし、高効率に反応を行ったためである. ここで は、本乳化方法を W/O エマルジョンを用いた PCR 法へ適用 し、その影響を調べた.

3.1 実験方法

PCR 溶液の組成は、PCR バッファー (20mM Tris-HCl (pH 8.8)、2mM MgSO₄、10mM KCl、10mM (NH₄) 2SO₄、0.1% Triton X-100、0.1mg/mL BSA)、0.2mM dNTPs (タカラバイオ)、10mM DTT (dithiothreitol 、和光純薬)、0.2 μ M Primer1 (5'-CTTGAGTCCAACCCGGTAAG) (フナコシ)、0.2 μ M Primer2 (5'-GGGGGAGTCAGGCAACTATGG) (フナコシ)、0.2 μ M Primer2 (5'-GGGGGAGTCAGGCAACTATGG) (フナコシ)、 pUC19 DNA (5ng) (タカラバイオ)、2.5U PfuTurbo DNA Polymerase (Stratagene) とした。この反応によって、522bp の増幅産物を得ることができる。実験には0.2mL チューブを 用いて、内部電極と外部電極の2種類で乳化を行った。乳化 を行った後、95℃、3分の後に95℃、30秒;60℃、30秒; 72℃、1分を12サイクル行い、16000×gで1分間 (4℃) 遠 心操作を行い、エマルジョンを破壊し、2 層に分離した後、

Fig.6 Emulsification using external electrode.

さらに PCR を 20 サイクル行った。PCR 産物は 0.8%アガロー スゲルで電気泳動して確認した。

3.2 結果と考察

表3に、ここで検討した各条件における液滴径を記載する. ここで、いずれの条件においても1分以内に十分に全体が白 濁していたので、電圧印加時間を最大で1分間とした.また、 長時間の電圧印加による酵素への影響を抑制するためでも ある.5kV_{0.P}、15秒(図7-lane2);3kV_{0.P}、15秒および30秒 (図7-lane3,4)、のときは全体が完全に白濁していなかった. 内部電極の場合、上述の1.5mL チューブを用いた場合と比べ ると、液滴径はおよそ半分となった.これは、マイクロチュ ーブを0.2mL 用に変えたため、内部の電界が大きくなったか らであると考えられる.しかし、*CV*値が35~50%と非常に 大きいため、今後さらに改良が必要である.

実験結果を図7に示す.乳化させていない試料(レーン1) と比較すると、いずれの条件においても明らかな阻害は確認 されなかった.これにより、電界を用いた乳化法が PCR に用 いることができることが示された.他の生化学反応への適用 も可能であると予想される.

しかし、内部電極の場合において、印加電圧を 7kV₀Pに上 昇させると産物を得ることができなかった.このとき、反応 終了時の水溶液の pH が酸性 (pH 指示薬の色からおよそ pH3 以下)になっていることが確認された.また、この結果は PCR 溶液中に 10mM DTT (酸化防止剤)を含んでいるが、これを 添加せずに、 $5kV_{0P}$ の電圧を印加したときにも増幅産物を得 ることができなかった (内部電極・外部電極の両方とも). これらのことから、生化学反応に応用する際は、溶液の pH を変化させないような適当な電圧 ($5kV_{0P}$ 以下)を選び、電 界による酸化を抑制する対策が必要であることがわかった.

表3 液滴径分布 (PCR への応用)

Table 3 Diameter of the droplets of PCR application.

					Lane
Voltage	Time	Diameter*	CV	Position of	in
[kV _{0-P}]	[sec]	[µm]	%]	electrode	Fig.
					7
5	15	4.24±2.21	52.2		2
5	30	3.24±1.15	35.4		3
3	15	3.61 ± 1.84	51.1	Inside	4
3	30	3.69±1.70	46.0		5
3	60	4.14±2.08	50.2		6
5	60	4.13±2.19	52.9	0.1.1	7
5.5	30	4.04±1.73	42.8	Outside	8
43.6	-				

*Mean±SD

M 1 2 3 4 5 6 7 8 M

図7 PCR の結果(電気泳動写真)

レーンM:分子量マーカー(λ /Hind III),レーン1:ポ ジティブコントロール(エマルジョンなし),レーン 2-8:表3に記述している条件で乳化したもの Fig.7 The results of the PCR (gel electrophoresis).

Lane M: molecular weight marker (λ /*Hind* III), lane 1: positive control (without emulsion). Lane 2-8 correspond to the sample mentioned in Table3.

4. まとめ

本報告において、以下の知見を得た。

- マイクロチューブ内に交流高電圧電極を配置すること
 で,静置した状態の水-油混合液を乳化できた.
- 高電圧電極をマイクロチューブの外側に配置しても乳 化できた.
- 3) 電界を用いて乳化しても PCR への顕著な影響は見られ なかった.

今後の課題としては、生化学反応やコンビナトリアルな反応へ応用する際は、単分散な液滴が形成されることが必要であり、CV値を抑えて、液滴径をコントロールできるように、 周波数応答などを測定することを含め改良を加える必要がある.

本研究は特別研究員奨励費(No.08351)および文部科学省 科学研究補助金(基盤研究B(2)15360440)の助成を受けて 行われたものであり、ここに記し、深く感謝いたします。

参考文献

- A. Sepp, D.S. Tawfik And A.D. Griffiths: FEBS Lett., 532 (2002) 455
- M. Nakano, J. Komatsu, S. Matsuura, K. Takashima, S. Katsura and A. Mizuno: J. Biotechnol., 102 (2003) 117
- 并野一,今石宣之,宝澤光紀,藤縄勝彦:化学工学論文 集,18 (1992) 819
- 4) 東辻健, 渡辺昌:日本化学会誌, 10 (1979) 1287
- 5) J.W. Ha and S.M. Yang: J. Fluid Mech., 405 (2000) 131
- 6) 中野道彦,高島和則,桂進司,水野彰:第28回静電気学 会講演論文集'04, p.121,静電気学会(2004)